1 |
陈天雨, 高尚, 冯旭宁, 等. 锂离子电池热失控蔓延研究进展[J]. 储能科学与技术, 2018, 7(6): 1030-1039.
|
|
CHEN T Y, GAO S, FENG X N, et al. Recent progress on thermal runaway propagation of lithium-ion battery[J]. Energy Storage Science and Technology, 2018, 7(6): 1030-1039.
|
2 |
LAMB J, ORENDORFF C J, STEELE L A M, et al. Failure propagation in multi-cell lithium ion batteries[J]. Journal of Power Sources. 2015,283:517-523.
|
3 |
ZHANG X, LIU C Z, RAO Z H. Experimental investigation on thermal management performance of electric vehicle power battery using composite phase change material[J]. Journal of Cleaner Production. 2018,201:916-924.
|
4 |
李煌. 三元锂离子电池热失控传播及阻隔机制研究[D]. 合肥: 中国科学技术大学, 2020.
|
|
LI H. Research on the thermal runaway propagation and its mitigation mechanism of ternary lithium ion battery[D]. Hefei: University of Science and Technology of China, 2020.
|
5 |
陈才星, 牛慧昌, 李钊, 等. 环氧树脂板对锂离子电池热失控扩展的阻隔作用[J]. 储能科学与技术, 2019, 8(3): 532-537.
|
|
CHEN C X, NIU H C, LI Z, et al. Thermal runaway propagation mitigation of lithium ion battery by epoxy resin board[J]. Energy Storage Science and Technology, 2019, 8(3): 532-537.
|
6 |
YUAN C C, WANG Q S, WANG Y, et al. Inhibition effect of different interstitial materials on thermal runaway propagation in the cylindrical lithium-ion battery module[J]. Applied Thermal Engineering, 2019, 153: 39-50.
|
7 |
WILKE S, SCHWEITZER B, KHATEEB S, et al. Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: An experimental study[J]. Journal of Power Sources, 2017, 340: 51-59.
|
8 |
LI Q B, YANG C B, SANTHANAGOPALAN S, et al. Numerical investigation of thermal runaway mitigation through a passive thermal management system[J]. Journal of Power Sources, 2019, 429: 80-88.
|
9 |
XU J, LAN C J, QIAO Y, et al. Prevent thermal runaway of lithium-ion batteries with minichannel cooling[J]. Applied Thermal Engineering, 2017, 110: 883-890.
|
10 |
LI Y, ZHOU Z, WU W T. Three-dimensional thermal modeling of Li-ion battery cell and 50 V Li-ion battery pack cooled by mini-channel cold plate[J]. Applied Thermal Engineering, 2019,147:829-840.
|
11 |
MOHAMMED A H, ESMAEELI R, ALINIAGERDROUDBARI H, et al. Dual-purpose cooling plate for thermal management of prismatic lithium-ion batteries during normal operation and thermal runaway[J]. Applied Thermal Engineering, 2019,160: doi:10.1016/j.applthermaleng.2019.114106.
|
12 |
ZHANG L W, ZHAO P, XU M, et al. Computational identification of the safety regime of Li-ion battery thermal runaway[J]. Applied Energy, 2020, 261: doi: 10.1016/j.apenergy.2019.114440.
|
13 |
ZHAO L, ZHU M T, XU X M, et al. Thermal runaway characteristics on NCM lithium-ion batteries triggered by local heating under different heat dissipation conditions[J]. Applied Thermal Engineering. 2019,159: doi:10.1016/j.applthermaleng. 2019.113847.
|
14 |
FENG X N, LU L G, OUYANG M G, et al. A 3D thermal runaway propagation model for a large format lithium ion battery module[J]. Energy, 2016, 115: 194-208.
|
15 |
PING P, PENG R Q, KONG D P, et al. Investigation on thermal management performance of PCM-fin structure for Li-ion battery module in high-temperature environment[J]. Energy Conversion and Management, 2018, 176: 131-146.
|
16 |
MO X B, ZHI H, XIAO Y Z, et al. Topology optimization of cooling plates for battery thermal management[J]. International Journal of Heat and Mass Transfer, 2021, 178: doi: 10.1016/j.ijheatmasstransfer. 2021.121612.
|
17 |
KOGA A A, LOPES E C C, VILLA NOVA H F, et al. Development of heat sink device by using topology optimization[J]. International Journal of Heat and Mass Transfer, 2013, 64: 759-772.
|
18 |
QIAN S H, WANG W, GE C L, et al. Topology optimization of fluid flow channel in cold plate for active phased array antenna[J]. Structural and Multidisciplinary Optimization, 2018, 57(6): 2223-2232.
|
19 |
KAWAMOTO A, MATSUMORI T, YAMASAKI S, et al. Heaviside projection based topology optimization by a PDE-filtered scalar function[J]. Structural and Multidisciplinary Optimization, 2011, 44(1): 19-24.
|