储能科学与技术 ›› 2022, Vol. 11 ›› Issue (8): 2418-2431.doi: 10.19799/j.cnki.2095-4239.2022.0369

• 电化学储能安全专刊 • 上一篇    下一篇

储能锂离子电池预制舱热失控烟气流动研究

徐成善1(), 鲁博瑞2, 张梦启1, 王淮斌1,3, 金昌勇1, 欧阳明高1, 冯旭宁1()   

  1. 1.清华大学车辆与运载学院,北京 100084
    2.四川新能源汽车创新中心有限公司,四川 宜宾 644000
    3.中国人民警察大学,河北 廊坊 065000
  • 收稿日期:2022-07-01 修回日期:2022-07-12 出版日期:2022-08-05 发布日期:2022-08-03
  • 通讯作者: 冯旭宁 E-mail:xcs_pcg@mail.tsinghua.edu.cn;fxn17@tsinghua.edu.cn
  • 作者简介:徐成善(1993—),男,工学博士,博士后,研究方向为电池安全,E-mail:xcs_pcg@mail.tsinghua.edu.cn
  • 基金资助:
    国家自然科学基金(52076121);河北省自然科学基金(2021507001)

Study on thermal runaway gas evolution in the lithium-ion battery energy storage cabin

Chengshan XU1(), Borui LU2, Mengqi ZHANG1, Huaibin WANG1,3, Changyong JIN1, Minggao OUYANG1, Xuning FENG1()   

  1. 1.School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
    2.Sichuan New Energy Vehicle Innovation Center, Yibin 644000, Sichuan, China
    3.China People's Police University, Langfang 065000, Hebei, China
  • Received:2022-07-01 Revised:2022-07-12 Online:2022-08-05 Published:2022-08-03
  • Contact: Xuning FENG E-mail:xcs_pcg@mail.tsinghua.edu.cn;fxn17@tsinghua.edu.cn

摘要:

随着电化学储能的大规模应用,储能系统的安全事故时有发生。在储能系统中,锂离子电池一旦发生热失控,其产生的可燃烟气极易被点燃,从而造成起火、爆炸事故。大型储能系统的电池热失控和蔓延产生的烟气流动危害极大,且试验成本高。因此,基于模型对储能预制舱的热失控烟气流动行为进行研究具有重要意义。本工作针对方壳磷酸铁锂电池开展了热失控喷发产气的测试,获取了电池喷发的产气量和气体成分。以此作为模型输入,通过Flacs软件建立了兆瓦时级的储能预制舱模型,研究了预制舱内多种热失控情景下的烟气流动行为。仿真结果表明,电池热失控后舱内的可燃气体积受电池位置和失控电池数量影响。热失控电池小于3只时,模组位置越高可燃烟气扩散的面积越大;热失控电池多于3只时,随着电池数目增多,发生热失控的模组位置越低,可燃烟气扩散的面积越大。对于同一个高度的模组,不同的位置形成的可燃烟气体积基本一致,且电池室中的可燃烟气会扩散至控制室。此外,在预制舱两侧增加泄压板,可有效地将舱内可燃气体排出,但泄压效果受泄压板位置和泄压面积影响。

关键词: 锂离子电池, 热失控, 烟气流动, 储能预制舱

Abstract:

With the widespread use of electrochemical energy storage, safety accidents in energy storage systems occur frequently. In the energy storage system, once the thermal runaway of lithium-ion batteries occurs, the combustible fumes are very simple to ignite, leading to fire and explosion mishaps. In large energy storage systems, the gas flow from thermal runaway and thermal runaway propagation of batteries is exceedingly harmful and expensive to test. Therefore, it is necessary to examine the behavior of thermal runaway gas flow in an energy storage cabin based on the model. In this study, a test of thermal runaway venting gas production was conducted for a lithium-ion battery with a LiFePO4 cathode, and the battery venting gas production rate and gas composition were obtained as model inputs. A megawatt-hour level energy storage cabin was modeled using Flacs, and the gas flow behavior in the cabin under different thermal runaway conditions was examined. Based on the simulation findings, it was discovered that the volume of gas inside the energy storage cabin after the battery's thermal runaway was influenced by the battery location and the number of thermal runaway batteries. When the number of thermal runaway batteries is <3, the higher the module position, the larger the area of combustible gas diffusion. When the number of thermal runaway batteries is >3, the number of batteries increases, and the lower the module position where thermal runaway occurs, the larger the area of combustible gas diffusion. For the same height of the module, the volume of combustible gas formed at various locations was the same, and the combustible gas in the battery room will spread to the control room. Additionally, adding pressure relief plates on both sides of the energy storage cabin can efficiently release gas from the cabin, but the impact of pressure relief is affected by the pressure relief plates' location and area.

Key words: lithium-ion battery, thermal runaway, gas evolution, energy storage cabin

中图分类号: