1 |
欧阳明高. 新能源革命的高潮正在到来[J]. 科学中国人, 2021(24): 16-18.
|
2 |
欧阳明高. 能源革命与新能源智能汽车[J]. 中国工业和信息化, 2019(11): 21-24.
|
3 |
欧阳明高. 迎接新能源智能化电动汽车新时代[J]. 科技导报, 2019, 37(7): 1.
|
|
OUYANG M G. Meet the new era of new energy and intelligent electric vehicle[J]. Science & Technology Review, 2019, 37(7): 1.
|
4 |
FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267.
|
5 |
LU L G, HAN X B, LI J Q, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288.
|
6 |
WANG Q S, PING P, ZHAO X J, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224.
|
7 |
欧阳明高. 中国新能源汽车的研发及展望[J]. 科技导报, 2016, 34(6): 13-20.
|
|
OUYANG M G. New energy vehicle research and development in China[J]. Science & Technology Review, 2016, 34(6): 13-20.
|
8 |
SAID A O, LEE C, STOLIAROV S I. Experimental investigation of cascading failure in 18650 lithium ion cell arrays: Impact of cathode chemistry[J]. Journal of Power Sources, 2020, 446: doi: 10.1016/j.jpowsour.2019.227347.
|
9 |
董海斌, 张少禹, 李毅, 等. NCM811高比能锂离子电池热失控火灾特性[J]. 储能科学与技术, 2019, 8(S1): 65-70.
|
|
DONG H B, ZHANG S Y, LI Y, et al. Thermal runaway fire characteristics of lithium ion batteries with high specific energy NCM811[J]. Energy Storage Science and Technology, 2019, 8(S1): 65-70.
|
10 |
王贺武, 张亚军, 李成, 等. 锂离子动力电池中等荷电状态下热失控产物喷发过程[J]. 储能科学与技术, 2019, 8(6): 1076-1081.
|
|
WANG H W, ZHANG Y J, LI C, et al. Venting process of lithium-ion power battery during thermal runaway under medium state of charge[J]. Energy Storage Science and Technology, 2019, 8(6): 1076-1081.
|
11 |
郭志慧, 崔潇丹, 赵林双, 等. 高镍三元锂离子电池火灾及气体爆炸危险性实验[J]. 储能科学与技术, 2022, 11(1): 193-200.
|
|
GUO Z H, CUI X D, ZHAO L S, et al. Fire and gas explosion hazards of high-nickel lithium-ion battery[J]. Energy Storage Science and Technology, 2022, 11(1): 193-200.
|
12 |
GOLUBKOV A W, PLANTEU R, KROHN P, et al. Thermal runaway of large automotive Li-ion batteries[J]. RSC Advances, 2018, 8(70): 40172-40186.
|
13 |
YUAN L M, DUBANIEWICZ T, ZLOCHOWER I, et al. Experimental study on thermal runaway and vented gases of lithium-ion cells[J]. Process Safety and Environmental Protection, 2020, 144: 186-192.
|
14 |
KIM J, MALLARAPU A, FINEGAN D P, et al. Modeling cell venting and gas-phase reactions in 18650 lithium ion batteries during thermal runaway[J]. Journal of Power Sources, 2021, 489: doi: 10.1016/j.jpowsour.2021.229496.
|
15 |
CHEN S C, WANG Z R, YAN W, et al. Investigation of impact pressure during thermal runaway of lithium ion battery in a semi-closed space[J]. Applied Thermal Engineering, 2020, 175: doi: 10.1016/j.applthermaleng.2020.115429.
|