储能科学与技术 ›› 2022, Vol. 11 ›› Issue (9): 2781-2797.doi: 10.19799/j.cnki.2095-4239.2022.0326

• 创刊十周年专刊 • 上一篇    下一篇

金属锂电池中力-电化学机制研究进展

沈馨1(), 张睿2, 赵辰孜1, 武鹏3, 张羽彤2, 张俊东1, 范丽珍4, 刘全兵5, 陈爱兵6, 张强1()   

  1. 1.清华大学化学工程系,绿色反应工程与工艺北京市重点实验室,北京 100084
    2.北京理工大学前沿交叉科学研究院,北京 100081
    3.宝马(中国)服务有限公司,北京 101318
    4.北京科技大学新材料技术研究院,北京 100083
    5.广东工业大学轻工化工学院,广东 广州 510006
    6.河北科技大学化学与制药工程学院,河北 石家庄 050018
  • 收稿日期:2022-06-15 修回日期:2022-06-22 出版日期:2022-09-05 发布日期:2022-08-30
  • 通讯作者: 张强 E-mail:shenx17@mails.tsinghua.edu.cn;zhang-qiang@mails.tsinghua.edu.cn
  • 作者简介:沈馨(1995—),女,博士研究生,研究方向为金属锂电池,E-mail:shenx17@mails.tsinghua.edu.cn
  • 基金资助:
    北京市自然科学基金重点项目(Z200011);国家自然科学基金项目(U1801257);国家重点研发计划项目(2021YFB2500300);京津冀协同创新共同体建设专项(22344402D)

Recent advances in mechano-electrochemistry in lithium metal batteries

Xin SHEN1(), Rui ZHANG2, Chenzi ZHAO1, Peng WU3, Yutong ZHANG2, Jundong ZHANG1, Lizhen FAN4, Quanbing LIU5, Aibing CHEN6, Qiang ZHANG1()   

  1. 1.Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
    2.Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
    3.Research & Development Center BMW, BMW China Services Ltd. , Beijing 101318, China
    4.Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
    5.School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
    6.College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, China
  • Received:2022-06-15 Revised:2022-06-22 Online:2022-09-05 Published:2022-08-30
  • Contact: Qiang ZHANG E-mail:shenx17@mails.tsinghua.edu.cn;zhang-qiang@mails.tsinghua.edu.cn

摘要:

以金属锂作为负极的金属锂电池具有极高的能量密度,有望成为下一代高比能量二次电池。然而,在充放电过程中,金属锂负极的相变转化机制、枝晶状形貌沉积特性使得电池具有巨大且极不均匀的内部体积变化。因此,相比于插层机制的锂离子电池,金属锂电池面临着锂枝晶生长、锂枝晶断裂与粉化、固体电解质(SEI)膜破裂、电解质/隔膜机械失效等更为严重的力-电化学相关问题。本文首先总结金属锂的弹性、塑性与黏性力学特性,并着重介绍了电沉积锂展现的尺寸效应,随后综述了金属锂电池环境中的力-电化学机制研究进展。针对液态电解质环境,介绍了应力驱动下的锂枝晶生长机制、界面(金属锂与SEI、负极与隔膜、金属锂与集流体)相互作用机制以及外压力调控机制。针对固态电解质环境,介绍了固-固界面接触带来的离子输运影响以及电解质体相/晶界/孔隙与金属锂之间的相互作用机制。最后,对当前金属锂电池中的力-电化学机制研究进行了总结并对未来发展方向进行了展望。

关键词: 金属锂电池, 金属锂负极, 锂枝晶, 力学, 电化学

Abstract:

Lithium metal batteries are considered next-generation rechargeable batteries owing to their ultrahigh energy density. However, during the charging/discharging process, the conversion mechanism and dendritic morphology of lithium metal anodes lead to huge and uneven internal volume modifications. Thus, lithium metal batteries experience more serious mechano-electrochemical problems compared with lithium-ion batteries, including lithium dendrite growth, lithium dendrite fracture and pulverization, solid electrolyte interphase (SEI) rupture, and electrolyte/separator mechanical failure. This review introduces the mechanical properties of lithium metal first, including elasticity, plasticity, and viscosity. Especially, the size effect of electrodeposited lithium is highlighted. Next, recent advances in mechano-electrochemical mechanisms in working lithium metal batteries are summarized. For the liquid electrolyte environment, the stress-driven lithium dendrite growth mechanism, interfacial (lithium metal and SEI, electrode and separator, and lithium metal and current collector) interaction mechanism, and external pressure regulation mechanism are presented. For the solid electrolyte environment, the ion transport impact from the solid-solid contact and interaction between the bulk/grain boundaries/voids of electrolytes and lithium metal are presented. Finally, the mechano-electrochemical mechanism in lithium metal batteries is summarized and the future development direction is prospected.

Key words: lithium metal batteries, lithium metal anodes, lithium dendrites, mechanics, electrochemistry

中图分类号: