储能科学与技术 ›› 2023, Vol. 12 ›› Issue (1): 278-298.doi: 10.19799/j.cnki.2095-4239.2022.0436

• 储能测试与评价 • 上一篇    下一篇

锌离子电池低温性能研究进展

袁紫微1(), 林楚园1, 袁紫嫣1, 孙晓丽1, 钱庆荣1,2, 陈庆华1,2, 曾令兴1,2()   

  1. 1.聚合物资源绿色循环利用教育部工程研究中心,福建师范大学环境与资源学院,福建 福州 350007
    2.先进能源材料化学教育部重点实验室,南开大学化学学院,天津 300071
  • 收稿日期:2022-08-02 修回日期:2022-08-26 出版日期:2023-01-05 发布日期:2023-02-08
  • 通讯作者: 曾令兴 E-mail:ziweiyuan2001@163.com;lingxing@fjnu.edu.cn
  • 作者简介:袁紫微(2001—),女,本科,研究方向为宽温域水系电池,E-mail:ziweiyuan2001@163.com
  • 基金资助:
    国家重点研发计划项目(2019YFC1904500);国家自然科学基金(NSFC 21801251);福建省杰出青年科学基金(2019J06015)

The research process on low temperature performance of zinc ion batteries

Ziwei YUAN1(), Chuyuan LIN1, Ziyan YUAN1, Xiaoli SUN1, Qingrong QIAN1,2, Qinghua CHEN1,2, Lingxing ZENG1,2()   

  1. 1.Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environment and Resources, Fujian Normal University, Fuzhou 350007, Fujian, China
    2.Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
  • Received:2022-08-02 Revised:2022-08-26 Online:2023-01-05 Published:2023-02-08
  • Contact: Lingxing ZENG E-mail:ziweiyuan2001@163.com;lingxing@fjnu.edu.cn

摘要:

新兴的可充电锌离子电池具有高安全性、环境友好、低成本、操作简单等优势,因此成为极具应用前景的下一代储能设备之一。然而,其在低温条件下展现出较低的放电容量以及功率密度,有时甚至无法正常运行,严重制约可充电锌离子电池的实用性。因此,本文对近期相关文献进行探讨,从电极材料的设计、优化电解质以及改进其他组件三个方面综述了提高锌离子电池低温性能的策略,着重介绍了晶体工程和组分设计在提高电极材料低温离子传导率方面的作用机制。对于电解质优化策略,重点分析了水系高浓度电解质、有机电解质、准固态/固态电解质、电解质添加剂、共晶电解质五种方法对降低电解质凝固点和提升锌离子电池低温电化学性能的机理。此外,简要阐述了高亲水性黏结剂以及高电导率隔膜等改进方法。综合分析表明,通过晶体工程、准固态/固态电解质和电解质添加剂等多种策略的协同耦合,有望实现研制具有高比容量、长循环稳定性和大倍率性能的低温锌离子电池。

关键词: 锌离子电池, 低温性能, 电极材料的设计, 电解质的优化, 电解质添加剂

Abstract:

New rechargeable zinc-based energy storage technologies have the advantages of high safety, environmental friendliness, cheap cost, and ease of use; as a result, they are thought to be among the most promising next-generation energy storage technologies. However, it displays poor discharge capacity and power density at low temperatures or even malfunctions, significantly limiting applicability. Therefore, through the discussion of recent related research, this review contemplates on the strategies to improve the low-temperature performance of zinc-ion batteries from three perspectives: the design of electrode materials, the optimization of electrolytes, and the improvement of other components. The mechanisms of crystal engineering and component design in improving the ion conductivity of electrode materials at low temperatures are emphasized. Regarding the electrolyte optimization strategy, the mechanism of five approaches, including aqueous high concentration electrolyte, organic electrolyte, quasi-solid/solid electrolyte, electrolyte additive, and eutectic electrolyte, to lower the freezing point of the electrolyte and enhance the electrochemical performance of zinc ion battery at low temperature was examined. Additionally, the enhancement techniques of high hydrophilic binder and high conductivity diaphragm are briefly mentioned. The thorough research reveals that the creation of low-temperature zinc-ion batteries with a high-specific capacity, long-cycle stability, and high-rate capability is anticipated to be realized through the cooperative coupling of crystal engineering, quasi-solid/solid electrolyte, and electrolyte additives.

Key words: zinc-ion batteries, low-temperature performance, electrode material design, electrolyte optimization, electrolyte additive

中图分类号: