储能科学与技术 ›› 2023, Vol. 12 ›› Issue (11): 3456-3470.doi: 10.19799/j.cnki.2095-4239.2023.0386

• 储能系统与工程 • 上一篇    下一篇

锂离子电池热失控监测与预警的气敏技术研究进展

谭则杰1(), 周晓燕2,3, 徐振恒1, 樊小鹏1, 田兵1, 王志明1, 李秋桐2, 付佳龙2, 李志勇2, 郭新2()   

  1. 1.南方电网数字电网研究院有限公司,广东 广州 510700
    2.华中科技大学材料科学与工程学院,湖北 武汉 430074
    3.湖北工业大学理学院,湖北 武汉 430068
  • 收稿日期:2023-06-05 修回日期:2023-07-22 出版日期:2023-11-05 发布日期:2023-11-16
  • 通讯作者: 郭新 E-mail:tanzj@csg.cn;xguo@hust.edu.cn
  • 作者简介:谭则杰(1996—),男,硕士,工程师,研究方向为智能传感器,E-mail:tanzj@csg.cn
    周晓燕(1993—),女,博士,讲师,研究方向为固体电解质及固态电池;
  • 基金资助:
    南网数研院技术合作项目(670000KK52220024)

Research progress of gas-sensing technologies for the monitoring and early warning of thermal runaway in lithium-ion batteries

Zejie TAN1(), Xiaoyan ZHOU2,3, Zhenheng XU1, Xiaopeng FAN1, Bing TIAN1, Zhiming WANG1, Qiutong LI2, Jialong FU2, Zhiyong LI2, Xin GUO2()   

  1. 1.Digital Grid Research Institute, China Southern Power Grid, Guangzhou 510700, Guangdong, China
    2.School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
    3.School of Science, Hubei University of Technology, Wuhan 430068, Hubei, China
  • Received:2023-06-05 Revised:2023-07-22 Online:2023-11-05 Published:2023-11-16
  • Contact: Xin GUO E-mail:tanzj@csg.cn;xguo@hust.edu.cn

摘要:

锂离子电池具有能量密度高、输出功率大等优点,是目前得到广泛应用的电化学储能器件之一。然而,电池运行过程中的电滥用、热滥用或机械滥用等会导致热失控发生,并进一步引发起火、燃烧甚至爆炸等安全问题,这严重限制了锂离子电池的发展。在锂离子电池热失控过程中,其内部会由于化学/电化学反应产生O2、H2、碳氧化合物(CO2、CO)、碳氢化合物(C2H4、CH4等)以及氟类气体(HF等)等特征气体,因此可以通过检测释放的气体组分和浓度对电池热失控行为进行监测和早期预警,从而提升电池安全性。本文对锂离子电池热失控的引发方式、产气机理、产气成分及其用于热失控早期预警的气敏技术研究进展进行综述。在此基础上,对热失控特征气体及其传感技术进行总结,并提出未来电池热失控早期预警的气体传感技术的发展思路。

关键词: 锂离子电池, 热失控, 早期预警, 产气

Abstract:

With the advantages of high energy and power densities, Li-ion batteries (LiBs) are widely used to power an increasingly diverse range of applications, including portable electrochemical energy-storage devices, electric vehicles, and large energy-storage power plants. In addition, they are considered the most competitive power sources for future green smart grids. With the increasing demand for energy sources and storage devices, LiBs with high energy density are continuously being pursued. However, high energy densities could result in high safety risks. The conventional organic liquid electrolyte components and olefin-based separators used in existing LiBs are flammable. In addition, nonuniform distribution of components, inhomogeneous interfacial contacts, and electrical, thermal, or mechanical abuses in the battery operating process can cause internal short circuit, thus releasing large amounts of Joules heat, resulting in a rapid temperature rise and thermal runaway propagation, thus triggering toxic gas release, smoke, fire, combustion or even explosion. To improve the safety and cycling lifetime of LiBs, the mechanism and process of thermal runaway must be understood. In addition, detection and warning technologies must be developed for the early-stages warning of the battery thermal runaway. Compared with technologies on monitoring the terminal voltage, current, and surface temperature, the gas-sensing approach can effectively detect the thermal runaway at a very early stage. During the thermal runaway process, LiBs produce characteristic gases, such as O2, H2, carbon oxides (CO, CO2), hydrocarbons (C2H4, CH4, etc.), and fluorine gases (HF, POF3, etc.), through chemical or electrochemical reactions. As such, the thermal runaway behavior of LiBs could be monitored and early warnings can be issued by detecting the composition and concentration of the released characteristic gases. This review comprehensively presents the research progress and prospects of gas-sensing techniques for the thermal runaway of LiBs. First, the paper summarizes the main causes and processes of the thermal runaway of LiBs. Next, the characteristic gas generation and corresponding detecting techniques are described. Then, this paper elaborates on the research progress on the gas detecting and sensing technologies for the early warning of the thermal runaway. Furthermore, gas-sensing technologies for the early warning in the thermal runaway in LiBs are proposed. This review provides guidance for the gas sensing technologies to achieve an early warning system of the thermal runaway in LiBs. Moreover, the findings of this study show the development of LiBs with high safety and high energy density.

Key words: lithium-ion batteries, thermal runaway, early warning, gas releasing

中图分类号: