储能科学与技术 ›› 2023, Vol. 12 ›› Issue (11): 3456-3470.doi: 10.19799/j.cnki.2095-4239.2023.0386
谭则杰1(), 周晓燕2,3, 徐振恒1, 樊小鹏1, 田兵1, 王志明1, 李秋桐2, 付佳龙2, 李志勇2, 郭新2()
收稿日期:
2023-06-05
修回日期:
2023-07-22
出版日期:
2023-11-05
发布日期:
2023-11-16
通讯作者:
郭新
E-mail:tanzj@csg.cn;xguo@hust.edu.cn
作者简介:
谭则杰(1996—),男,硕士,工程师,研究方向为智能传感器,E-mail:tanzj@csg.cn基金资助:
Zejie TAN1(), Xiaoyan ZHOU2,3, Zhenheng XU1, Xiaopeng FAN1, Bing TIAN1, Zhiming WANG1, Qiutong LI2, Jialong FU2, Zhiyong LI2, Xin GUO2()
Received:
2023-06-05
Revised:
2023-07-22
Online:
2023-11-05
Published:
2023-11-16
Contact:
Xin GUO
E-mail:tanzj@csg.cn;xguo@hust.edu.cn
摘要:
锂离子电池具有能量密度高、输出功率大等优点,是目前得到广泛应用的电化学储能器件之一。然而,电池运行过程中的电滥用、热滥用或机械滥用等会导致热失控发生,并进一步引发起火、燃烧甚至爆炸等安全问题,这严重限制了锂离子电池的发展。在锂离子电池热失控过程中,其内部会由于化学/电化学反应产生O2、H2、碳氧化合物(CO2、CO)、碳氢化合物(C2H4、CH4等)以及氟类气体(HF等)等特征气体,因此可以通过检测释放的气体组分和浓度对电池热失控行为进行监测和早期预警,从而提升电池安全性。本文对锂离子电池热失控的引发方式、产气机理、产气成分及其用于热失控早期预警的气敏技术研究进展进行综述。在此基础上,对热失控特征气体及其传感技术进行总结,并提出未来电池热失控早期预警的气体传感技术的发展思路。
中图分类号:
谭则杰, 周晓燕, 徐振恒, 樊小鹏, 田兵, 王志明, 李秋桐, 付佳龙, 李志勇, 郭新. 锂离子电池热失控监测与预警的气敏技术研究进展[J]. 储能科学与技术, 2023, 12(11): 3456-3470.
Zejie TAN, Xiaoyan ZHOU, Zhenheng XU, Xiaopeng FAN, Bing TIAN, Zhiming WANG, Qiutong LI, Jialong FU, Zhiyong LI, Xin GUO. Research progress of gas-sensing technologies for the monitoring and early warning of thermal runaway in lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(11): 3456-3470.
表1
不同LIBs热失控过程的产气行为"
电池体系 | 容量/Ah | SOC | 气体总量/mL | 气体种类和浓度 | 参考文献 |
---|---|---|---|---|---|
正极:—;负极:—;电解质:— | — | 100% | — | N2 (33.13%),CO2 (29.86%),H2 (15.25%),CO (7.26%),CH4 (5.71%),C2H4 (4.33%) | [ |
正极:LCO/NCM;负极:石墨;电解质: LiPF6 DMC/ EMC/EC | 2.6 | — | 5936±985.6 | CO2 (24.9%),CO (27.6%),H2 (30%),CH4 (8.6%), C2H4 (7.7%),C2H6 (1.2%) | [ |
正极:NCM;负极:石墨;电解质: LiPF6 DMC/ EMC/EC/PC | 1.5 | — | 3337.6±537.6 | CO2 (41.2%),CO (13%),H2 (30.8%),CH4 (6.8%), C2H4 (8.2%) | |
正极:LFP;负极:石墨;电解质: LiPF6 DMC/EMC/EC/PC | 1.1 | — | 1120±89.6 | CO2 (53%),CO (4.8%),H2 (30.9%),CH4 (4.1%), C2H4 (6.8%),C2H6 (0.3%) | |
正极:LFP;负极:—;电解质: LiPF6 DMC/EMC/EC/PC | 2.5 | 120% | 645.8 ± 37.1 | CO2 (47%),H2 (23%),C2H4 (10%),CO (4.9%), C2H5F (4.6%) | [ |
正极:LCO;负极:Li x C6;电解质: LiPF6 PC/EMC/DEC/DMC) | 1 | — | 10.5 | CO2 (75.6%),CH4 (12%),C2H6 (2.6%),C3H8 (2.7%), O2 (1.3), N2 (5.3%) | [ |
正极:LFP;电解质:—;负极:石墨 | 3.8 | 100% | 3790 | H2 (24.24%),CO (4.5%),CO2 (25.39%),CH4 (5.9%), C2H2 (0.08%),C2H4 (3.26),C2H6 (1.29%) | [ |
正极:LTO;电解质:—;负极:石墨 | 1.3 | 8980 | H2 (8.41%),CO (5.3%),CO2 (37.6%),CH4 (1.23%), C2H2 (0.0008%),C2H4 (1.38%),C2H6 (0.4%) | ||
正极:NMC;电解质:—;负极:石墨 | 3.2 | 11720 | H2 (12.39%),CO (30.30%),CO2 (13.22%),CH4 (10.50%), C2H2 (0.0026%),C2H4 (0.1%),C2H6 (0.16%) | ||
正极:LCO;负极:石墨化碳纤维; 电解质:1 mol/L LiPF6 EC/EMC | 0.65 | 90% | 22 | CO2 (—),H2 (—),CO (—),CH4 (—),C2H4 (—),C2H6 (—) | [ |
正极:NCM;负极:石墨;电解质: LiPF6 EC/DEC/EMC | 32 | 170% | — | CO2 (32.2%),CO (45.1%),C2H4 (4.2%),C2H6 (0.51%) | [ |
180% | — | CO2 (39.9%),CO (43.3%),C2H4 (7.9%),C2H6 (0.8%), CH4 (0.4%) | |||
190% | — | CO2 (58.4%),CO (31.7%),C2H4 (3.97%),C2H6 (0.81%),CH4 (0.53%) | |||
正极:LCO;负极:石墨;电解质: LiPF6 DMC/EC | 2.3 | 75% | — | N2 (68%),O2 (14.31%),H2 (5.92%),CO2 (4.86%), CO (3.58%),C x H y (3.44%) | [ |
100% | — | N2 (54.54%),O2 (11.26%),H2 (8.81%),CO2 (5.3%), CO (11.95%),C x H y (8.14%) | |||
正极:NCM;负极:石墨;电解质: LiPF6 DMC/EC | 2.6 | 75% | — | N2 (59.75),O2 (14.57%),H2 (5.66%),CO2 (5.21%), CO (4.21%),C x H y (9.31%) | |
100% | — | N2 (39.89),O2 (4.71%),H2 (11.56%),CO2 (7.25%), CO (22.02%),C x H y (14.57%) | |||
正极:LFP;负极:石墨;电解质: LiPF6 EC/EMC/PC; | ~2.75 | 100% | — | CO2 (2000 ppm),CO (1000 ppm),H2 (1000 ppm) (1 ppm=10-6) | [ |
1 | LEBROUHI B E, KHATTARI Y, LAMRANI B, et al. Key challenges for a large-scale development of battery electric vehicles: A comprehensive review[J]. Journal of Energy Storage, 2021, 44: 103273. |
2 | YANG Z J, HUANG H B, LIN F. Sustainable electric vehicle batteries for a sustainable world: Perspectives on battery cathodes, environment, supply chain, manufacturing, life cycle, and policy[J]. Advanced Energy Materials, 2022, 12(26): 2200383. |
3 | QIU Y S, JIANG F M. A review on passive and active strategies of enhancing the safety of lithium-ion batteries[J]. International Journal of Heat and Mass Transfer, 2022, 184: 122288. |
4 | ZHANG Q S, NIU J H, ZHAO Z H, et al. Research on the effect of thermal runaway gas components and explosion limits of lithium-ion batteries under different charge states[J]. Journal of Energy Storage, 2022, 45: 103759. |
5 | CHOMBO P V, LAOONUAL Y. A review of safety strategies of a Li-ion battery[J]. Journal of Power Sources, 2020, 478: 228649. |
6 | SNYDER M, THEIS A. Understanding and managing hazards of lithium-ion battery systems[J]. Process Safety Progress, 2022, 41(3): 440-448. |
7 | UN C, AYDıN K. Thermal runaway and fire suppression applications for different types of lithium ion batteries[J]. Vehicles, 2021, 3(3): 480-497. |
8 | LAI X, YAO J, JIN C Y, et al. A review of lithium-ion battery failure hazards: Test standards, accident analysis, and safety suggestions[J]. Batteries, 2022, 8: 248. |
9 | 陈钦佩, 王学辉, 米文忠. 电动汽车锂离子电池系统热失控气体毒害及爆炸特性研究[J]. 储能科学与技术, 2023, 12(7): 2256-2262. |
CHEN Q P, WANG X H, MI W Z. Experiential study on the toxic and explosive characteristics of thermal runaway gas generated in electric-vehicle lithium-ion battery systems[J]. Energy Storage Science and Technology, 2023, 12(7): 2256-2262. | |
10 | 周洋捷, 王震坡, 洪吉超, 等. 新能源汽车动力电池"过充电-热失控"安全防控技术研究综述[J]. 机械工程学报, 2022, 58(10): 112-135. |
ZHOU Y J, WANG Z P, HONG J C, et al. Review of overcharge-to-thermal runaway and the control strategy for lithium-ion traction batteries in electric vehicles[J]. Journal of Mechanical Engineering, 2022, 58(10): 112-135. | |
11 | 杨坤, 雷洪钧, 肖博文, 等. 锂离子电池热失控机理分析与解决策略[J]. 江汉大学学报(自然科学版), 2020, 48(5): 14-20. |
YANG K, LEI H J, XIAO B W, et al. Mechanism analysis and solution strategy of thermal runaway of lithium ion battery[J]. Journal of Jianghan University (Natural Science Edition), 2020, 48(5): 14-20. | |
12 | MCKERRACHER R D, GUZMAN-GUEMEZ J, WILLS R G A, et al. Advances in prevention of thermal runaway in lithium-ion batteries[J]. Advanced Energy and Sustainability Research, 2021, 2(5): 2000059. |
13 | FU J L, LI Z, ZHOU X Y, et al. Ion transport in composite polymer electrolytes[J]. Materials Advances, 2022, 3(9): 3809-3819. |
14 | ZHOU X Y, LI X G, LI Z, et al. Hybrid electrolytes with an ultrahigh Li-ion transference number for lithium-metal batteries with fast and stable charge/discharge capability[J]. Journal of Materials Chemistry A, 2021, 9(34): 18239-18246. |
15 | LI W F, ZHANG Y J, GAO Z H, et al. Experimental and theoretical analysis of the eruption processes of abused prismatic Ni-rich automotive batteries based on multi-parameters[J]. Journal of Energy Storage, 2022, 52: 105012. |
16 | APPLEBERRY M C, KOWALSKI J A, AFRICK S A, et al. Avoiding thermal runaway in lithium-ion batteries using ultrasound detection of early failure mechanisms[J]. Journal of Power Sources, 2022, 535: 231423. |
17 | 丁奕, 杨艳, 陈锴, 等. 锂离子电池智能消防及其研究方法[J]. 储能科学与技术, 2022, 11(6): 1822-1833. |
DING Y, YANG Y, CHEN K, et al. Intelligent fire protection of lithium-ion battery and its research method[J]. Energy Storage Science and Technology, 2022, 11(6): 1822-1833. | |
18 | 王春力, 贡丽妙, 亢平, 等. 锂离子电池储能电站早期预警系统研究[J]. 储能科学与技术, 2018, 7(6): 1152-1158. |
WANG C L, GONG L M, KANG P, et al. Research on early warning system of lithium ion battery energy storage power station[J]. Energy Storage Science and Technology, 2018, 7(6): 1152-1158. | |
19 | 李晋, 王青松, 孔得朋, 等. 锂离子电池储能安全评价研究进展[J]. 储能科学与技术, 2023, 12(7): 2282-2301. |
LI J, WANG Q S, KONG D P, et al. Research progress on the safety assessment of lithium-ion battery energy storage[J]. Energy Storage Science and Technology, 2023, 12(7): 2282-2301. | |
20 | WANG K, OUYANG D X, QIAN X M, et al. Early warning method and fire extinguishing technology of lithium-ion battery thermal runaway: A review[J]. Energies, 2023, 16(7): 2960. |
21 | 惠东, 高飞, 杨凯, 等. 锂离子电池安全防护技术专利分析[J]. 高电压技术, 2018, 44(1): 106-118. |
HUI D, GAO F, YANG K, et al. Patent analysis of safety protection technology for lithium ion batteries[J]. High Voltage Engineering, 2018, 44(1): 106-118. | |
22 | 刘文婷. 从三方面着手提升锂电池安全性[N]. 中国电子报, 2023-02-28. |
23 | 黄颖峰, 孙玉波, 赵锦, 等. 利用傅里叶变换红外光谱进行储能电柜热失控诊断的系统: CN115792674A[P]. 2023-03-14. |
HUANG Y F, SUN Y B, ZHAO J, et al. System for diagnosing thermal runaway of energy storage electric cabinet by using Fourier transform infrared spectrum: CN115792674A[P]. 2023-03-14. | |
24 | 刘启帆, 康斌, 顾文亮, 等. 监测方法、系统、设备和存储介质: CN116298954A[P]. 2023-06-23. |
LIU Q F, KANG B, GU W L, et al. Monitoring method, system and equipment and storage medium: CN116298954A[P]. 2023-06-23. | |
25 | 李奎杰, 楼平, 管敏渊, 等. 锂离子电池热失控多维信号演化及耦合机制研究综述[J]. 储能科学与技术, 2023, 12(3): 899-912. |
LI K J, LOU P, GUAN M Y, et al. A review of multi-dimensional signal evolution and coupling mechanism of lithium-ion battery thermal runaway[J]. Energy Storage Science and Technology, 2023, 12(3): 899-912. | |
26 | FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. |
27 | WANG S J, RAFIZ K, LIU J L, et al. Effects of lithium dendrites on thermal runaway and gassing of LiFePO4 batteries[J]. Sustainable Energy & Fuels, 2020, 4(5): 2342-2351. |
28 | KUMAI K, MIYASHIRO H, KOBAYASHI Y, et al. Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell[J]. Journal of Power Sources, 1999, 81/82: 715-719. |
29 | SIM R, LANGDON J, MANTHIRAM A. Design of an online electrochemical mass spectrometry system to study gas evolution from cells with lean and volatile electrolytes[J]. Small Methods, 2023, 7(6): 2201438. |
30 | KOCH S, BIRKE K, KUHN R. Fast thermal runaway detection for lithium-ion cells in large scale traction batteries[J]. Batteries, 2018, 4(2): 16. |
31 | 石爽, 吕娜伟, 马敬轩, 等. 不同类型气体探测对磷酸铁锂电池储能舱过充安全预警有效性对比[J]. 储能科学与技术, 2022, 11(8): 2452-2462. |
SHI S, LYU N W, MA J X, et al. Comparative study on the effectiveness of different types of gas detection on the overcharge safety early warning of a lithium iron phosphate battery energy storage compartment[J]. Energy Storage Science and Technology, 2022, 11(8): 2452-2462. | |
32 | NIE K H, WANG X L, QIU J L, et al. Increasing poly(ethylene oxide) stability to 4.5 V by surface coating of the cathode[J]. ACS Energy Letters, 2020, 5(3): 826-832. |
33 | CAI T, STEFANOPOULOU A G, SIEGEL J B. Early detection for Li-ion batteries thermal runaway based on gas sensing[J]. ECS Transactions, 2019, 89(1): 85-97. |
34 | LIAO Z H, ZHANG J G, GAN Z Y, et al. Thermal runaway warning of lithium-ion batteries based on photoacoustic spectroscopy gas sensing technology[J]. International Journal of Energy Research, 2022, 46(15): 21694-21702. |
35 | 张永明, 单志林, 张启兴, 等. 基于阵列传感器的锂电池火灾特征气体探测方法及系统: CN116046989A[P]. 2023-05-02. |
ZHANG Y M, SHAN Z L, ZHANG Q X, et al. Lithium battery fire characteristic gas detection method and system based on array sensor: CN116046989A[P]. 2023-05-02. | |
36 | SPOTNITZ R, FRANKLIN J. Abuse behavior of high-power, lithium-ion cells[J]. Journal of Power Sources, 2003, 113(1): 81-100. |
37 | RUIZ V, PFRANG A, KRISTON A, et al. A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1427-1452. |
38 | WEN J W, YU Y, CHEN C H. A review on lithium-ion batteries safety issues: Existing problems and possible solutions[J]. Materials Express, 2012, 2(3): 197-212. |
39 | FERNANDES Y, BRY A, DE PERSIS S. Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery[J]. Journal of Power Sources, 2018, 389: 106-119. |
40 | ZHU Y Y, XIE J, PEI A, et al. Fast lithium growth and short circuit induced by localized-temperature hotspots in lithium batteries[J]. Nature Communications, 2019, 10: 2067. |
41 | 李悦, 李天奇, 秦建华, 等. 18650磷酸铁锂电池不同放电倍率下产热机理研究[J]. 电源技术, 2021, 45(8): 1001-1004. |
LI Y, LI T Q, QIN J H, et al. Study on the heat generation mechanism of 18650 LiFePO4 battery under different discharge rates[J]. Chinese Journal of Power Sources, 2021, 45(8): 1001-1004. | |
42 | LAMB J, ORENDORFF C J. Evaluation of mechanical abuse techniques in lithium ion batteries[J]. Journal of Power Sources, 2014, 247: 189-196. |
43 | LI H G, ZHOU D, ZHANG M H, et al. Multi-field interpretation of internal short circuit and thermal runaway behavior for lithium-ion batteries under mechanical abuse[J]. Energy, 2023, 263: 126027. |
44 | WANG H, LARA-CURZIO E, RULE E T, et al. Mechanical abuse simulation and thermal runaway risks of large-format Li-ion batteries[J]. Journal of Power Sources, 2017, 342: 913-920. |
45 | WU Q, YANG L, LI N, et al. In-situ thermography revealing the evolution of internal short circuit of lithium-ion batteries[J]. Journal of Power Sources, 2022, 540: 231602. |
46 | 徐成善, 鲁博瑞, 张梦启, 等. 储能锂离子电池预制舱热失控烟气流动研究[J]. 储能科学与技术, 2022, 11(8): 2418-2431. |
XU C S, LU B R, ZHANG M Q, et al. Study on thermal runaway flue gas flow in prefabricated compartment of energy storage lithium ion battery[J]. Energy Storage Science and Technology, 2022, 11(8): 2418-2431. | |
47 | 张斌, 吴楠, 赵希强, 等. 基于红外热成像技术的动力电池组热失控监测系统[J]. 电池工业, 2019, 23(4): 171-175, 185. |
ZHANG B, WU N, ZHAO X Q, et al. Thermal out-of-control monitoring system for power batteries based on infrared thermal imaging technology[J]. Chinese Battery Industry, 2019, 23(4): 171-175, 185. | |
48 | 苏同伦. 基于声信号的锂电池储能舱安全预警及故障定位方法研究[D]. 郑州: 郑州大学, 2021. |
SU T L. Battery energy storage cabin based on acoustic signal research on safety warning and fault location of lithium[D]. Zhengzhou: Zhengzhou University, 2021. | |
49 | WANG Q S, MAO B B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131. |
50 | ZHAO L W, WATANABE I, DOI T, et al. TG-MS analysis of solid electrolyte interphase (SEI) on graphite negative-electrode in lithium-ion batteries[J]. Journal of Power Sources, 2006, 161(2): 1275-1280. |
51 | YANG H, BANG H, AMINE K, et al. Investigations of the exothermic reactions of natural graphite anode for Li-ion batteries during thermal runaway[J]. Journal of the Electrochemical Society, 2005, 152(1): A73. |
52 | ORENDORFF C J. The role of separators in lithium-ion cell safety[J]. Interface Magazine, 2012, 21(2): 61-65. |
53 | WANG Q S, SUN J H, CHEN X F, et al. Effects of solvents and salt on the thermal stability of charged LiCoO2[J]. Materials Research Bulletin, 2009, 44(3): 543-548. |
54 | ZOU K Y, LU S X, CHEN X, et al. Thermal and gas characteristics of large-format LiNi0.8Co0.1Mn0.1O2 pouch power cell during thermal runaway[J]. Journal of Energy Storage, 2021, 39: 102609. |
55 | FENG X N, FANG M, HE X M, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry[J]. Journal of Power Sources, 2014, 255: 294-301. |
56 | ALLEN J. Review of polymers in the prevention of thermal runaway in lithium-ion batteries[J]. Energy Reports, 2020, 6: 217-224. |
57 | WANG Z, YANG H, LI Y, et al. Thermal runaway and fire behaviors of large-scale lithium ion batteries with different heating methods[J]. Journal of Hazardous Materials, 2019, 379: 120730. |
58 | QIN P, JIA Z Z, WU J Y, et al. The thermal runaway analysis on LiFePO4 electrical energy storage packs with different venting areas and void volumes[J]. Applied Energy, 2022, 313: 118767. |
59 | HUANG Z H, ZHAO C P, LI H, et al. Experimental study on thermal runaway and its propagation in the large format lithium ion battery module with two electrical connection modes[J]. Energy, 2020, 205: 117906. |
60 | ZHANG Q S, LIU T T, HAO C L, et al. In situ Raman investigation on gas components and explosion risk of thermal runaway emission from lithium-ion battery[J]. Journal of Energy Storage, 2022, 56: 105905. |
61 | 杜光超, 郑莉莉, 张志超, 等. 圆柱形高镍三元锂离子电池高温热失控实验研究[J]. 储能科学与技术, 2020, 9(1): 249-256. |
DU G C, ZHENG L L, ZHANG Z C, et al. Experimental study on high temperature thermal runaway of cylindrical high nickel ternary lithium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(1): 249-256. | |
62 | 庄春吉, 黄辉, 胡敏杰, 等. 热失控数据采集实验系统设计与实验研究[J]. 实验室科学, 2022, 25(2): 14-18. |
ZHUANG C J, HUANG H, HU M J, et al. Design and experimental study on thermal runaway data acquisition experiment system[J]. Laboratory Science, 2022, 25(2): 14-18. | |
63 | GOLUBKOV A W, FUCHS D, WAGNER J, et al. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes[J]. RSC Advances, 2014, 4(7): 3633-3642. |
64 | YUAN L M, DUBANIEWICZ T, ZLOCHOWER I, et al. Experimental study on thermal runaway and vented gases of lithium-ion cells[J]. Process Safety and Environmental Protection, 2020, 144: 186-192. |
65 | OHSAKI T, KISHI T, KUBOKI T, et al. Overcharge reaction of lithium-ion batteries[J]. Journal of Power Sources, 2005, 146(1/2): 97-100. |
66 | YUAN Q F, ZHAO F G, WANG W D, et al. Overcharge failure investigation of lithium-ion batteries[J]. Electrochimica Acta, 2015, 178: 682-688. |
67 | 张青松, 刘添添, 郝朝龙, 等. 锂离子电池热失控气体快速检测及危险性分析方法[J]. 北京航空航天大学学报, 2023, 49(9): 2227-2233. |
ZHANG Q S, LIU T T, HAO C L, et al. Rapid detection analysis method of thermal runaway gas composition and risk of lithium ion battery[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(9): 2227-2233. | |
68 | JIN Y, ZHENG Z K, WEI D H, et al. Detection of micro-scale Li dendrite via H2 gas capture for early safety warning[J]. Joule, 2020, 4(8): 1714-1729. |
69 | 李磊, 李钊, 姬丹, 等. 过充电触发的LFP和NCM锂离子电池的热失控行为:差异与原因[J]. 储能科学与技术, 2022, 11(5): 1419-1427. |
LI L, LI Z, JI D, et al. Overcharge induced thermal runaway behaviors of pouch-type lithium-ion batteries with LFP and NCM cathodes: The differences and reasons[J]. Energy Storage Science and Technology, 2022, 11(5): 1419-1427. | |
70 | FERNANDES Y, BRY A, DE PERSIS S. Thermal degradation analyses of carbonate solvents used in Li-ion batteries[J]. Journal of Power Sources, 2019, 414: 250-261. |
71 | LAMB J, ORENDORFF C J, ROTH E P, et al. Studies on the thermal breakdown of common Li-ion battery electrolyte components[J]. Journal of the Electrochemical Society, 2015, 162(10): A2131-A2135. |
72 | RAVDEL B, ABRAHAM K M, GITZENDANNER R, et al. Thermal stability of lithium-ion battery electrolytes[J]. Journal of Power Sources, 2003, 119/120/121: 805-810. |
73 | 王铭民, 孙磊, 郭鹏宇, 等. 基于气体在线监测的磷酸铁锂储能电池模组过充热失控特性[J]. 高电压技术, 2021, 47(1): 279-286. |
WANG M M, SUN L, GUO P Y, et al. Overcharge and thermal runaway characteristics of lithium iron phosphate energy storage battery modules based on gas online monitoring[J]. High Voltage Engineering, 2021, 47(1): 279-286. | |
74 | SOMANDEPALLI V, MARR K, HORN Q. Quantification of combustion hazards of thermal runaway failures in lithium-ion batteries[J]. SAE International Journal of Alternative Powertrains, 2014, 3(1): 98-104. |
75 | 马彪, 林春景, 刘磊, 等. 锂离子电池热失控产气特性及其可燃极限[J]. 储能科学与技术, 2022, 11(5): 1592-1600. |
MA B, LIN C J, LIU L, et al. Venting characteristics and flammability limit of thermal runaway gas of lithium ion battery[J]. Energy Storage Science and Technology, 2022, 11(5): 1592-1600. | |
76 | AMANO K O A, HAHN S K, BUTT N, et al. Composition and explosibility of gas emissions from lithium-ion batteries undergoing thermal runaway[J]. Batteries, 2023, 9(6): 300. |
77 | WILLSTRAND O, PUSHP M, ANDERSSON P, et al. Impact of different Li-ion cell test conditions on thermal runaway characteristics and gas release measurements[J]. Journal of Energy Storage, 2023, 68: 107785. |
78 | 张青松, 刘添添, 白伟. 加热方式对锂离子电池热失控行为影响[J]. 中国安全科学学报, 2021, 31(9): 44-51. |
ZHANG Q S, LIU T T, BAI W. Effect of heating mode on thermal runaway behavior of lithium ion battery[J]. China Safety Science Journal, 2021, 31(9): 44-51. | |
79 | YANG Y, WANG Z R, GUO P K, et al. Carbon oxides emissions from lithium-ion batteries under thermal runaway from measurements and predictive model[J]. Journal of Energy Storage, 2021, 33: 101863. |
80 | ZHOU Z Z, JU X Y, ZHOU X D, et al. A comprehensive study on the impact of heating position on thermal runaway of prismatic lithium-ion batteries[J]. Journal of Power Sources, 2022, 520: 230919. |
81 | LI Y W, JIANG L H, HUANG Z H, et al. Pressure effect on the thermal runaway behaviors of lithium-ion battery in confined space[J]. Fire Technology, 2023, 59(3): 1137-1155. |
82 | 张青松, 包防卫, 牛江昊. 环境压力对锂电池热失控产气及爆炸风险的影响[J]. 储能科学与技术, 2023, 12(7): 2263-2270. |
ZHANG Q S, BAO F W, NIU J H. Risk analysis method of thermal runaway gas explosion in lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2263-2270. | |
83 | 郝维健, 胡建, 马天翼, 等. 动力电池产气分析技术的研究与展望[J]. 时代汽车, 2022(3): 106-110. |
HAO W J, HU J, MA T Y, et al. Research and prospect of gas production analysis technology for power battery[J]. Auto Time, 2022(3): 106-110. | |
84 | 邓哲, 黄震宇, 刘磊, 等. 超声技术在锂离子电池表征中的应用[J]. 储能科学与技术, 2019, 8(6): 1033-1039. |
DENG Z, HUANG Z Y, LIU L, et al. Applications of ultrasound technique in characterization of lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(6): 1033-1039. | |
85 | CAI T, STEFANOPOULOU A G, SIEGEL J B. Modeling Li-ion battery temperature and expansion force during the early stages of thermal runaway triggered by internal shorts[J]. Journal of the Electrochemical Society, 2019, 166(12): A2431-A2443. |
86 | CAI T, PANNALA S, STEFANOPOULOU A G, et al. Battery internal short detection methodology using cell swelling measurements[C]// 2020 American Control Conference (ACC). July 1-3, 2020, Denver, CO, USA. IEEE, 2020: 1143-1148. |
87 | WANG H B, XU H, ZHANG Z L, et al. Fire and explosion characteristics of vent gas from lithium-ion batteries after thermal runaway: A comparative study[J]. eTransportation, 2022, 13: 100190. |
88 | HU J T, LI L Z, BI Y J, et al. Locking oxygen in lattice: A quantifiable comparison of gas generation in polycrystalline and single crystal Ni-rich cathodes[J]. Energy Storage Materials, 2022, 47: 195-202. |
89 | 陈达, 郝朝龙, 刘添添, 等. 锂离子电池热失控气体拉曼光谱分析方法研究[J]. 中国激光, 2022, 49(23): 186-194. |
CHEN D, HAO (C /Z)L, LIU T T, et al. Study on Raman spectrum analysis method of thermal runaway gas in lithium-ion battery[J]. Chinese Journal of Lasers, 2022, 49(23): 186-194. | |
90 | SRINIVASAN R, THOMAS M E, AIROLA M B, et al. Preventing cell-to-cell propagation of thermal runaway in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(2): 020559. |
91 | GACHOT G, RIBIÈRE P, MATHIRON D, et al. Gas chromatography/mass spectrometry as a suitable tool for the Li-ion battery electrolyte degradation mechanisms study[J]. Analytical Chemistry, 2011, 83(2): 478-485. |
92 | 郝维健, 李琛, 陆春, 等. 基于产气分析的动力电池安全监测方法综述[J]. 中国汽车, 2022, 32(3): 59-63. |
HAO W J, LI C, LU C, et al. A review of traction battery safety monitoring methods based on gas generation analysis[J]. China Auto, 2022, 32(3): 59-63. | |
93 | WENGER M, WALLER R, LORENTZ V R H, et al. Investigation of gas sensing in large lithium-ion battery systems for early fault detection and safety improvement[C]//IECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society. October 29-November 1, 2014, Dallas, TX, USA. IEEE, 2015: 5654-5659. |
94 | 王志荣, 杨赟, 佟轩, 等. 基于气体监测的锂离子电池组热失控自动报警器及其监测方法: CN108008083A[P]. 2018-05-08. |
WANG Z R, YANG Y, TONG X, et al. Lithium-ion battery pack thermal runway automatic alarming apparatus based on gas monitoring and monitoring method: CN108008083A[P]. 2018-05-08. | |
95 | LEE K, CHO I, KANG M G, et al. Ultra-low-power E-nose system based on multi-micro-LED-integrated, nanostructured gas sensors and deep learning[J]. ACS Nano, 2023, 17(1): 539-551. |
96 | KANG H, CHO S Y, RYU J, et al. Multiarray nanopattern electronic nose (E-nose) by high-resolution top-down nanolithography[J]. Advanced Functional Materials, 2020, 30(27): 2002486. |
[1] | 李悦, 王博, 吴楠. 石墨烯/Si/SiO x 纳米复合材料的制备及储锂性能研究[J]. 储能科学与技术, 2023, 12(9): 2752-2759. |
[2] | 曾少鸿, 吴伟雄, 刘吉臻, 汪双凤, 叶石丰, 冯振宇. 锂离子电池浸没式冷却技术研究综述[J]. 储能科学与技术, 2023, 12(9): 2888-2903. |
[3] | 陈欣, 李云伍, 梁新成, 李法霖, 张志冬. 基于模态分解的Transformer-GRU联合电池健康状态估计[J]. 储能科学与技术, 2023, 12(9): 2927-2936. |
[4] | 李纪伟, 刘睿涵, 吕桃林, 潘隆, 马常军, 李清波, 赵芝芸, 杨文, 解晶莹. 基于局部离群点检测和标准差方法的锂离子电池组早期故障诊断[J]. 储能科学与技术, 2023, 12(9): 2917-2926. |
[5] | 黄晓伟, 李少鹏, 张校刚. 负极补锂锂化裕度对电芯性能的影响及机理研究[J]. 储能科学与技术, 2023, 12(9): 2727-2734. |
[6] | 周向阳, 胡颖杰, 梁家浩, 周其杰, 文康, 陈松, 杨娟, 唐晶晶. 天然鳞片石墨球化尾料的高性能负极材料制备及储锂特性研究[J]. 储能科学与技术, 2023, 12(9): 2767-2777. |
[7] | 江婉薇, 梁呈景, 钱历, 刘梅城, 朱孟想, 马骏. 锡基三维石墨烯泡沫调控及其锂电池负极性能[J]. 储能科学与技术, 2023, 12(9): 2746-2751. |
[8] | 高欣, 王若谷, 高文菁, 邓泽军, 梁睿祺, 杨騉. 基于运行数据的储能电站电池组一致性评估方法[J]. 储能科学与技术, 2023, 12(9): 2937-2945. |
[9] | 官亦标, 沈进冉, 刘家亮, 渠展展, 高飞, 刘施阳, 郭翠静, 周淑琴, 付珊珊. 以安全高质量应用为导向的储能锂离子电池综合性能评价标准[J]. 储能科学与技术, 2023, 12(9): 2946-2953. |
[10] | 郭煜, 王亦伟, 钟隽, 杜进桥, 田杰, 李艳, 蒋方明. 基于增量容量曲线的锂离子电池微内短路故障诊断方法[J]. 储能科学与技术, 2023, 12(8): 2536-2546. |
[11] | 唐程波, 锁要红, 何昭坤. 基于正弦函数的液冷板上流体流向对锂离子电池散热性能的影响[J]. 储能科学与技术, 2023, 12(8): 2547-2555. |
[12] | 左安昊, 方儒卿, 李哲. 锂离子电池单颗粒动力学表征方法综述[J]. 储能科学与技术, 2023, 12(8): 2457-2481. |
[13] | 陈满, 程志翔, 赵春朋, 彭鹏, 雷旗开, 金凯强, 王青松. 锂离子电池储能集装箱爆炸危害数值模拟[J]. 储能科学与技术, 2023, 12(8): 2594-2605. |
[14] | 黄永浩, 臧国景, 朱霨亚, 廖友好, 李伟善. LiF添加剂改善含锂陶瓷隔膜与4.35 V LiNi0.8Co0.1Mn0.1O2 正极的界面稳定性[J]. 储能科学与技术, 2023, 12(8): 2361-2369. |
[15] | 杨佳兴, 张恒运, 徐屹东. 基于电化学-热耦合模型的锂离子电池组件产热分析[J]. 储能科学与技术, 2023, 12(8): 2615-2625. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||