储能科学与技术 ›› 2023, Vol. 12 ›› Issue (12): 3873-3882.doi: 10.19799/j.cnki.2095-4239.2023.0708
付殿威(), 张灿灿(), 娜荷芽, 王国强, 吴玉庭, 鹿院卫
收稿日期:
2023-10-11
修回日期:
2023-11-03
出版日期:
2023-12-05
发布日期:
2023-12-09
通讯作者:
张灿灿
E-mail:fdwei@emails.bjut.edu.cn;zcc@bjut.edu.cn
作者简介:
付殿威(2000—),男,硕士研究生,研究方向为熔盐热物性,E-mail:fdwei@emails.bjut.edu.cn;
基金资助:
Dianwei FU(), Cancan ZHANG(), Heya NA, Guoqiang WANG, Yuting WU, Yuanwei LU
Received:
2023-10-11
Revised:
2023-11-03
Online:
2023-12-05
Published:
2023-12-09
Contact:
Cancan ZHANG
E-mail:fdwei@emails.bjut.edu.cn;zcc@bjut.edu.cn
摘要:
熔盐作为高温传热蓄热介质,在太阳能光热发电、火电厂灵活性改造等场景中广泛应用。本文首先对熔盐分子动力学的势函数进行归纳分析,发现针对硝酸盐更适合使用带有库仑力的Buckingham势函数,碳酸盐和氯化盐采用BMH势函数计算可以减小模拟误差。其次对熔盐热物性进行分析,发现加入
中图分类号:
付殿威, 张灿灿, 娜荷芽, 王国强, 吴玉庭, 鹿院卫. 基于分子动力学的熔盐热物性研究进展[J]. 储能科学与技术, 2023, 12(12): 3873-3882.
Dianwei FU, Cancan ZHANG, Heya NA, Guoqiang WANG, Yuting WU, Yuanwei LU. Review of the molecular dynamics of molten salt thermal physical properties[J]. Energy Storage Science and Technology, 2023, 12(12): 3873-3882.
表1
熔盐分子动力学模拟势函数"
氯化物、硝酸根和碳酸根熔盐的模拟势函数 | ||||
---|---|---|---|---|
序号 | 势函数名称 | 应用类型 | 公式 | |
1 | Born-Mayer-Huggins-Tosi-Fumi[ | (1) | ||
(2) | ||||
2 | Born-Mayer-Huggins-Tosi-Fumi[ | (3) | ||
3 | Born-Mayer-Huggins[ | (4) | ||
4 | Born–Mayer–Huggins[ | (5) | ||
5 | Born-Mayer[ | (6) | ||
6 | Busing[ | (7) | ||
7 | Buckingham[ | (8) | ||
(9) | ||||
8 | Buckingham[ | (10) | ||
9 | Lennard-Jones[ | (11) | ||
(12) |
1 | 王辉祥, 熊亚选, 任静, 等. Na2CO3/电石渣复合相变储热材料制备与性能[J]. 储能科学与技术, 2022, 11(12): 3819-3827. |
WANG H X, XIONG Y X, REN J, et al. Fabrication and performance investigation of Na2CO3/Carbide slag shape-stable phase change composites[J]. Energy Storage Science and Technology, 2022, 11(12): 3819-3827. | |
2 | 王智慧. 新能源产业引领经济绿色低碳发展[J]. 储能科学与技术, 2023, 12(4): 1306-1307. |
WANG Z H. New energy industry leads the green and low-carbon development of economy[J]. Energy Storage Science and Technology, 2023, 12(4): 1306-1307. | |
3 | 刘志成, 彭道刚, 赵慧荣, 等. 双碳目标下储能参与电力系统辅助服务发展前景[J]. 储能科学与技术, 2022, 11(2): 704-716. |
LIU Z C, PENG D G, ZHAO H R, et al. Development prospects of energy storage participating in auxiliary services of power systems under the targets of the dual-carbon goal[J]. Energy Storage Science and Technology, 2022, 11(2): 704-716. | |
4 | 张璐迪, 吴玉庭, 任楠, 等. 纳米粒子的分散对提高LMPS盐比热容的影响[J]. 太阳能学报, 2017, 38(11): 3018-3021. |
ZHANG L D, WU Y T, REN N, et al. Effects of nanoparticle dispersion on enhancing specific heat capacity of lmps salt[J]. Acta Energiae Solaris Sinica, 2017, 38(11): 3018-3021. | |
5 | 邹露璐, 吴玉庭, 马重芳. 低熔点四元混合硝酸盐的开发与实验研究[J]. 太阳能学报, 2020, 41(5): 27-32. |
ZOU L L, WU Y T, MA C F. Experimental study of low melting point mixed nitrates[J]. Acta Energiae Solaris Sinica, 2020, 41(5): 27-32. | |
6 | 王金梁, 吴华栋. 太阳盐的热力学性质及其在光热发电中的应用[J]. 发电设备, 2021, 35(5): 334-338. |
WANG J L, WU H D. Thermophysical properties of solar salt and its application in solar thermal power generation[J]. Power Equipment, 2021, 35(5): 334-338. | |
7 | XU B, LI P W, CHAN C. Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments[J]. Applied Energy, 2015, 160: 286-307. |
8 | ARAMENDı́A M A, BORAU V, JIMÉNEZ C, et al. Effects of Na2CO3 impregnation on the catalytic activity of Mg3(PO4)2 in the gas-phase conversion of 2-hexanol and the alkylation of aniline with methanol[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 170(1): 51-58. |
9 | BAE S J, AHN Y, LEE J, et al. Various supercritical carbon dioxide cycle layouts study for molten carbonate fuel cell application[J]. Journal of Power Sources, 2014, 270: 608-618. |
10 | IORA P, CAMPANARI S. Development of a three-dimensional molten carbonate fuel cell model and application to hybrid cycle simulations[J]. Journal of Fuel Cell Science and Technology, 2007, 4(4): 501-510. |
11 | 李鑫, 李安定, 李斌, 等. 太阳能制氢研究现状及展望[J]. 太阳能学报, 2005, 26(1): 127-133. |
LI X, LI A D, LI B, et al. The status and prospects for solar hydrogen production from water[J]. Acta Energiae Solaris Sinica, 2005, 26(1): 127-133. | |
12 | 陶冰梅. 多元碳酸盐相变储热材料改性研究[D]. 武汉: 武汉理工大学, 2015. |
TAO B M. The modification of multivariate carbonate phase change thermal storage materials[D]. Wuhan: Wuhan University of Technology, 2015. | |
13 | 廖敏, 丁静, 魏小兰, 等. 高温碳酸熔盐的制备及传热蓄热性质[J]. 无机盐工业, 2008, 40(10): 15-17. |
LIAO M, DING J, WEI X L, et al. Preparation and heat transfer and thermal storage property of high-temperature carbonate molten salt[J]. Inorganic Chemicals Industry, 2008, 40(10): 15-17. | |
14 | MYERS P D, GOSWAMI D Y. Thermal energy storage using chloride salts and their eutectics[J]. Applied Thermal Engineering, 2016, 109: 889-900. |
15 | SUBARI F, MAKSOM H F, ZAWAWI A. Corrosion behavior of eutectic molten salt solution on stainless steel 316L[J]. Procedia-Social and Behavioral Sciences, 2015, 195: 2699-2708. |
16 | TAFRISHI H, SADEGHZADEH S, AHMADI R. Molecular dynamics simulations of phase change materials for thermal energy storage: A review[J]. RSC Advances, 2022, 12(23): 14776-14807. |
17 | 崔守鑫, 胡海泉, 肖效光, 等. 分子动力学模拟基本原理和主要技术[J]. 聊城大学学报(自然科学版), 2005, 18(1): 30-34. |
CUI S X, HU H Q, XIAO X G, et al. The basic principles and methods of molecular dynamics simulation[J]. Journal of Liaocheng Teachers University, 2005, 18(1): 30-34. | |
18 | LENNARD-JONES L. The determination of molecular fields. I. From the variation for molecular simulation[J]. Proc Roy Soc London, 1924, 106: 441-462. |
19 | MORSE P M. Diatomic molecules according to the wave mechanics. II. vibrational levels[J]. Physical Review, 1929, 34(1): 57-64. |
20 | DIENES G, HATCHER R, SMOLCHOWSKI R, et al. Recent calculations concerning point defects in alkali halides[J]. Miscellaneous Publication-National Bureau of Standards, 1934: 11. |
21 | BUCKINGHAM R A. The classical equation of state of gaseous helium, neon and argon[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1938, 168(933): 264-283. |
22 | IDA Y. Interionic repulsive force and compressibility of ions[J]. Physics of the Earth and Planetary Interiors, 1976, 13(2): 97-104. |
23 | 葛春醒. 纳米孔隙气相导热系数的分子动力学模拟[D]. 哈尔滨: 哈尔滨工业大学, 2010. |
GE C X. Investigation of gas thermal conductivity in nanopore by molecular dynamics[D]. Harbin: Harbin Institute of Technology, 2010. | |
24 | GALAMBA N, NIETO DE CASTRO C A, ELY J F. Thermal conductivity of molten alkali halides from equilibrium molecular dynamics simulations[J]. The Journal of Chemical Physics, 2004, 120(18): 8676-8682. |
25 | WU J, WANG J, NI H O, et al. The influence of NaCl concentration on the (LiCl-KCl)eutectic system and temperature dependence of the ternary system[J]. Journal of Molecular Liquids, 2018, 253: 96-112. |
26 | ZHANG S, YAN Y Y. Melting and thermodynamic properties of nanoscale binary chloride salt as high-temperature energy storage material[J]. Case Studies in Thermal Engineering, 2021, 25: 100973. |
27 | FUMI F G, TOSI M P. Ionic sizes and born repulsive parameters in the NaCl-type alkali halides—I[J]. Journal of Physics and Chemistry of Solids, 1964, 25(1): 31-43. |
28 | TOSI M P, FUMI F G. Ionic sizes and born repulsive parameters in the NaCl-type alkali halides—II[J]. Journal of Physics and Chemistry of Solids, 1964, 25(1): 45-52. |
29 | TISSEN J T W M, JANSSEN G J M. Molecular-dynamics simulation of molten alkali carbonates[J]. Molecular Physics, 1990, 71(2): 413-426. |
30 | 黄世萍, 刘洪霖, 马彦会, 等. ZnCl2熔盐的分子动力学模拟[J]. 物理化学学报, 1995, 11(1): 71-73. |
HUANG S P, LIU H L, MA Y H, et al. Molecular dynamics simulation of ZnCl2 melts[J]. Acta Physico-Chimica Sinica, 1995, 11(1): 71-73. | |
31 | SUN H. COMPASS: An ab initio force-field optimized for condensed-phase ApplicationsOverview with details on alkane and benzene compounds[J]. Journal of Physical Chemistry B, 1998, 102: 7338-7364. |
32 | HOCKNEY R W, EASTWOOD J W. Computer Simulation Using Particles[M]. Calabasas: CRC Press, 2021. |
33 | WHITE D N J. A computationally efficient alternative to the Buckingham potential for molecular mechanics calculations[J]. Journal of Computer-Aided Molecular Design, 1997, 11(5): 517-521. |
34 | HU Y W, HE Y R, ZHANG Z D, et al. Effect of Al2O3 nanoparticle dispersion on the specific heat capacity of a eutectic binary nitrate salt for solar power applications[J]. Energy Conversion and Management, 2017, 142: 366-373. |
35 | FRENKEL D, SMIT B. Understanding molecular simulation: from algorithms to applications[M]. San Diego: Academic Press, 1996. |
36 | PAN G C, DING J, WANG W L, et al. Molecular simulations of the thermal and transport properties of alkali chloride salts for high-temperature thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2016, 103: 417-427. |
37 | FRENKEL D, SMIT B, RATNER M A. Understanding molecular simulation: From algorithms to applications[J]. Physics Today, 1997, 50(7): 66. |
38 | FRENKEL D, SMIT B. Understanding molecular simulation: from algorithms to applications[M]. San Diego: Academic Press, 1996. |
39 | NI H O, WU J, SUN Z, et al. Molecular simulation of the structure and physical properties of alkali nitrate salts for thermal energy storage[J]. Renewable Energy, 2019, 136: 955-967. |
40 | HAZEBROUCQ S, PICARD G S, ADAMO C, et al. Density-functional-based molecular-dynamics simulations of molten salts[J]. The Journal of Chemical Physics, 2005, 123(13): 134510. |
41 | HUANG S, TANG B, CHEN N. Molecular dynamics simulation of ZnCl~2-KCl molten solution[J]. Acta Chimica Sinica, 1995, 53(3): 234. |
42 | DING J, PAN G, DU L C, et al. Theoretical prediction of the local structures and transport properties of binary alkali chloride salts for concentrating solar power[J]. Nano Energy, 2017, 39: 380-389. |
43 | XIE W J, DING J, PAN G, et al. Heat and mass transportation properties of binary chloride salt as a high-temperature heat storage and transfer media[J]. Solar Energy Materials and Solar Cells, 2020, 209: 110415. |
44 | RONG Z Z, PAN G, LU J F, et al. Ab-initio molecular dynamics study on thermal property of NaCl-CaCl2 molten salt for high-temperature heat transfer and storage[J]. Renewable Energy, 2021, 163: 579-588. |
45 | 姜涛, 王宁, 程长明, 等. LiCl-KCl-CeCl3熔盐结构与热力学的分子动力学模拟[J]. 物理化学学报, 2016, 32(3): 647-655. |
JIANG T, WANG N, CHENG C M, et al. Molecular dynamics simulation on the structure and thermodynamics of molten LiCl-KCl-CeCl3[J]. Acta Physico-Chimica Sinica, 2016, 32(3): 647-655. | |
46 | ANAGNOSTOPOULOS A, ALEXIADIS A, DING Y. Molecular dynamics simulation of solar salt (NaNO3-KNO3) mixtures[J]. Solar Energy Materials and Solar Cells, 2019, 200: 109897. |
47 | JAYARAMAN S, THOMPSON A, LILIENFELD O A V, et al. Molecular simulation of the thermal and transport properties of three alkali nitrate salts[J]. Industrial \& Engineering Chemistry Research, 2010, 49: 559-571. |
48 | 吴玉庭, 任楠, 刘斌, 等. 熔融盐传热蓄热及其在太阳能热发电中的应用[J]. 新材料产业, 2012(7): 20-26. |
WU Y T, REN N, LIU B, et al. Heat transfer and heat storage of molten salt and its application in solar thermal power generation[J]. Advanced Materials Industry, 2012(7): 20-26. | |
49 | 张灿灿, 吴玉庭, 鹿院卫. 低熔点混合硝酸熔盐的制备及性能分析[J]. 储能科学与技术, 2020, 9(2): 435-439. |
ZHANG C C, WU Y T, LU Y W. Preparation and comparative analysis of thermophysical properties on low melting point mixed nitrate molten salts[J]. Energy Storage Science and Technology, 2020, 9(2): 435-439. | |
50 | WEI G S, WANG G, XU C, et al. Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1771-1786. |
51 | HE Z Y, YANG Q R, LI Z Y, et al. Effect of the mesoporous size, structure and surface on the melting and heat transport properties of solar salt[J]. Solar Energy Materials and Solar Cells, 2022, 248: 111978. |
52 | NI H O, WU J, SUN Z, et al. Insight into the viscosity enhancement ability of Ca(NO3)2 on the binary molten nitrate salt: A molecular dynamics simulation study[J]. Chemical Engineering Journal, 2019, 377: 120029. |
53 | CHEN Y Y, ZHAO C Y. Thermophysical properties of Ca(NO3)2-NaNO3-KNO3 mixtures for heat transfer and thermal storage[J]. Solar Energy, 2017, 146: 172-179. |
54 | NI H O, WU J, SUN Z, et al. Influence of NO2-on the microscopic structure and physical properties of the binary nitrate salts: A molecular dynamics simulation study[J]. Journal of Thermal Science, 2020, 29(2): 464-476. |
55 | MAHTAB A F, DONGHYUN S. Molecular dynamics study on the impact of the development of dendritic nanostructures on the specific heat capacity of molten salt nanofluids[J]. Journal of Energy Storage, 2023, 71: 107850. |
56 | DU L C, DING J, WANG W L, et al. Molecular dynamics simulations on the binary eutectic system Na2CO3-K2CO3[J]. Energy Procedia, 2017, 142: 3553-3559. |
57 | 杨薛明, 刘杰庭, 崔吉祥, 等. 氯化物熔盐单质及其混合物热物性的分子动力学模拟研究[J]. 太阳能学报, 2022, 43(11): 433-442. |
YANG X M, LIU J T, CUI J X, et al. Molecular dynamics simulation research of thermophysical properties of chloride molten salts and their mixtures[J]. Acta Energiae Solaris Sinica, 2022, 43(11): 433-442. | |
58 | DING J, PAN G, DU L C, et al. Molecular dynamics simulations of the local structures and transport properties of Na2CO3 and K2CO3[J]. Applied Energy, 2018, 227: 555-563. |
59 | MANGA V R, SWINTECK N, BRINGUIER S, et al. Interplay between structure and transport properties of molten salt mixtures of ZnCl2-NaCl-KCl: A molecular dynamics study[J]. The Journal of Chemical Physics, 2016, 144(9): 094501. |
60 | RUAN Z H, GAO P, YUAN Y, et al. Theoretical estimation of temperature-dependent radiation properties of molten solar salt using molecular dynamics and first principles[J]. Energy, 2022, 246: 123379. |
[1] | 田禾青, 寇朝阳, 周俊杰, 余银生. LiCl-KCl熔盐纳米流体结构和热物性的分子动力学模拟[J]. 储能科学与技术, 2023, 12(3): 654-660. |
[2] | 张慧敏, 王京, 王一博, 郑家新, 邱景义, 曹高萍, 张浩. 锂离子电池SEI多尺度建模研究展望[J]. 储能科学与技术, 2023, 12(2): 366-382. |
[3] | 韩瑞, 廖志荣, 于博旭, 徐超, 巨星. 面向火电厂改造的熔盐卡诺电池储能系统仿真研究[J]. 储能科学与技术, 2023, 12(12): 3605-3615. |
[4] | 袁子鸥, 王峰, 祁星朝, 张琦, 马瑞. 应用于储热领域的混合钠基废盐热物性分析[J]. 储能科学与技术, 2023, 12(12): 3616-3626. |
[5] | 杜保存, 黄丽娟, 雷勇刚, 宋翀芳, 王飞. 填充床熔盐蓄热器的动态温度与应力特性[J]. 储能科学与技术, 2022, 11(7): 2141-2150. |
[6] | 熊良涛, 王继芬, 谢华清, 章学来. 空位缺陷对单层石墨烯导热特性影响的分子动力学[J]. 储能科学与技术, 2022, 11(5): 1322-1330. |
[7] | 于沛平, 许亮, 麻冰云, 孙钦涛, 杨昊, 刘越, 程涛. 多尺度模拟研究固体电解质界面[J]. 储能科学与技术, 2022, 11(3): 921-928. |
[8] | 张灿灿, 韩松涛, 吴玉庭, 鹿院卫, 牛俊楠. 硝基熔盐纳米流体在扭曲扁管内流动与换热特性[J]. 储能科学与技术, 2022, 11(11): 3641-3648. |
[9] | 王辉, 李峻, 祝培旺, 王坚, 张春琳. 应用于火电机组深度调峰的百兆瓦级熔盐储能技术[J]. 储能科学与技术, 2021, 10(5): 1760-1767. |
[10] | 宋文兵, 鹿院卫, 陈晓彤, 何聪, 樊占胜, 吴玉庭. 氯化盐/陶瓷定形复合相变材料的制备和热物性研究[J]. 储能科学与技术, 2021, 10(5): 1720-1728. |
[11] | 何聪, 鹿院卫, 宋文兵, 陈晓彤, 吴玉庭, 樊占胜. 新型相同钠离子混合熔盐相图预测及物性测量[J]. 储能科学与技术, 2021, 10(5): 1729-1734. |
[12] | 陈晓彤, 鹿院卫, 何聪, 宋文兵, 吴玉庭, 杨桂春. 基于换热面积连续调节的单罐熔盐储热系统释热功率稳定性研究[J]. 储能科学与技术, 2021, 10(5): 1753-1759. |
[13] | 吴玉庭, 明苏布道, 张灿灿, 鹿院卫. 三元混合碳酸熔盐热物性实验研究[J]. 储能科学与技术, 2021, 10(4): 1292-1296. |
[14] | 杨民安, 陈宁, 王博, 张乾, 陈敬沛, 赵海雷, 李福燊. 锂离子电池正极材料循环稳定性的基因规律[J]. 储能科学与技术, 2021, 10(2): 462-469. |
[15] | 盛鹏, 徐丽, 赵广耀, 韩燕, 吴玉庭. 新型混合硝酸熔盐的制备及热物性研究[J]. 储能科学与技术, 2021, 10(1): 170-176. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||