储能科学与技术 ›› 2023, Vol. 12 ›› Issue (3): 792-807.doi: 10.19799/j.cnki.2095-4239.2022.0650
收稿日期:
2022-11-04
修回日期:
2022-12-07
出版日期:
2023-03-05
发布日期:
2023-04-14
通讯作者:
陈楠
E-mail:1023869217@qq.com;chenn@bit.edu.cn
作者简介:
封迈(1998—),女,硕士研究生,研究方向为锂离子电池低温电解液,E-mail:1023869217@qq.com;
基金资助:
Mai FENG1,2,3(), Nan CHEN1,2(), Renjie CHEN1,2
Received:
2022-11-04
Revised:
2022-12-07
Online:
2023-03-05
Published:
2023-04-14
Contact:
Nan CHEN
E-mail:1023869217@qq.com;chenn@bit.edu.cn
摘要:
锂离子电池在低温条件下运行时,电池的电化学性能已经不能达到最佳状态,存在容量迅速恶化的问题,这限制了其在极寒地区以及航空、国防军事等特殊领域的应用。因此,提高电池的低温性能成为研究热点之一。本文通过对相关文献的探讨,综述了改善锂离子电池低温性能的策略,着重介绍了电导率较高的新型锂盐、由低熔点和高介电常数组成的混合溶剂以及有助于形成稳定SEI膜的成膜添加剂对电池低温性能的影响,重点分析了上述因素对于锂离子电池低温性能的影响机制。综合分析表明,Li+的溶剂化结构与去溶剂化过程在电极界面上的行为直接决定了电池的低温性能。本文强调了从电解液的溶剂化结构入手来设计低温电解液的重要性,为未来低温锂离子电池开发提供了新思路。
中图分类号:
封迈, 陈楠, 陈人杰. 锂离子电池低温电解液的研究进展[J]. 储能科学与技术, 2023, 12(3): 792-807.
Mai FENG, Nan CHEN, Renjie CHEN. Research progress of low-temperature electrolyte for lithium-ion battery[J]. Energy Storage Science and Technology, 2023, 12(3): 792-807.
表1
锂盐的性质对比"
Lithium salt | Characteristics | Usage and dosage | Stability on AI | Stability on Cu |
---|---|---|---|---|
LiPF6 | 1.空气中分解,放出PF5,产生白色烟雾; 2.在有机溶剂中分解温度80 ℃; 3.对水敏感,副反应产物HF,破坏SEI | 1. 1.2 mol/L电解液电导率最高; 2. 1 mol/L以上利于长循环寿命 | 好 | 好 |
LiBF4 | 1.对水分不敏感; 2.分解温度390 ℃,热稳定性好; 3.溶剂中分解温度大于100 ℃; 4.离子电导率低,常用作添加剂 | 1.高温优于LiBOB,低温性能较好; 2.使用量0.5%以内 | 好 | 好 |
LiBOB | 1.溶解度低; 2.离子电导率低于LiPF6; 3.吸湿性; 4.成膜性能优异,参与SEI膜形成; 5.分解温度302 ℃,热稳定性好 | 1.提升锰酸锂循环并抑制膨胀; 2.负极成膜稳定,可以在PC溶剂中使用,拓宽电池温度适用范围; 3.使用量1%以内 | 好 | 好 |
LiODFB | 1.分解温度240 ℃,不会在高温条件下与溶剂反应; 2.电导率介于LiBF4和LiBOB之间; 3.负极成膜稳定,阻抗小 | 1.高压体系使用较多,与其他添加剂组合使用更好; 2.影响电解液酸度测试; 3.使用量1%以内 | 好 | 好 |
LiTFSI | 1.较高的电化学稳定性和电导率; 2.分解温度370 ℃,热稳定性好; 3.对于电压要求不高的电池有优势 | 1.高低温性能、安全性能及容量方面,都超过了LiClO4电解液; 2.使用量1.5%以内 | 差 | 好 |
LiFSI | 1.具有较优异的电导率; 2.分解温度308 ℃,热稳定性好; 2.低温性能好,在低于-20 ℃时,有着明显的优势; 3.可以抑制软包电池胀气 | 1.提升倍率; 2.提升低温性能; 3.使用量1.5%以内 | 差 | 好 |
表3
各电解液组分"
Number | Sample name | Electrolyte composition |
---|---|---|
1# | BA0%+EC0% | Base(DMC∶EMC=3∶5)+1 mol/L LPF |
2# | BA16%+EC10% | Base+16%BA+10%EC+1 mol/L LPF |
3# | 0.1 mol/L LBF | Base+16%BA+10%EC+0.1 mol/L LBF+0.9 mol/L LPF |
4# | 0.2 mol/L LBF | Base+16%BA+10%EC+0.2 mol/L LBF+0.8 mol/L LPF |
5# | 0.3 mol/L LBF | Base+16%BA+10%EC+0.3 mol/L LBF+0.7 mol/L LPF |
表4
低温电池电解液设计"
Electrolyte | Cathode | Test temperature/℃ | Current density | Cycling | Capacity /(mAh/g) | Reference |
---|---|---|---|---|---|---|
LiPF6+80%EC/DMC(30∶70)+2%FEC+20%MA | NCM532 | 20 | 0.5 C | 100 | 202 | [ |
1 mol/L LiPF6+0.05 mol/L CsPF6+EC/PC/EMC(1∶1∶8) | Gr||NCM111 | -40 | 0.2 C | 400 | 40 | [ |
1.2 mol/L LiTFSI/AN/FM | NCM622 | -20 | 0.2 C | 100 | 130 | [ |
1 mol/L LiDFOB/FEC/IZ | C | -10 | 0.1 C | 20 | 155 | [ |
BE+MA+1%TMSP+1%PCS | MCMB||LiNi0.5Mn1.5O4 | -5 | 0.3 C | 200 | 102 | [ |
1.28 mol/L LiFSI+FEMC/FEC-D2 | NCA | -20 | 1/3 C | 400 | 150 | [ |
BA16%+EC10%+0.3 mol/L LBF | NCM811 | -20 | 0.1 C | 10 | 150 | [ |
1 mol/L LiFSI-LiNO3/DME | NCM811 | -91 | 5 C | 700 | 86 | [ |
1 | 赵世玺, 郭双桃, 赵建伟, 等. 锂离子电池低温特性研究进展[J]. 硅酸盐学报, 2016, 44(1): 19-28. |
ZHAO S X, GUO S T, ZHAO J W, et al. Development on low-temperature performance of lithium ion batteries[J]. Journal of the Chinese Ceramic Society, 2016, 44(1): 19-28. | |
2 | 韦连梅, 燕溪溪, 张素娜, 等. 锂离子电池低温电解液研究进展[J]. 储能科学与技术, 2017, 6(1): 69-77. |
WEI L M, YAN X X, ZHANG S N, et al. Progress of low-temperature electrolyte for lithium-ion battery[J]. Energy Storage Science and Technology, 2017, 6(1): 69-77. | |
3 | 吴凯卓, 王美, 尚晓锋, 等. 锂离子电池低温电解液优化途径[J]. 电池工业, 2017, 21(4): 50-53. |
WU K Z, WANG M, SHANG X F, et al. Optimization approach of low temperature electrolyte for lithium-ion batteries[J]. Chinese Battery Industry, 2017, 21(4): 50-53. | |
4 | 田君, 胡道中, 王一拓, 等. 低温锂离子启动电池用电解液及电极材料综述[J]. 电源技术, 2019, 43(4): 677-679. |
TIAN J, HU D Z, WANG Y T, et al. Application prospects of electrolytes and electrode materials for low-temperature lithium-ion starting batteries[J]. Chinese Journal of Power Sources, 2019, 43(4): 677-679. | |
6 | ZHANG N, DENG T, ZHANG S Q, et al. Critical review on low-temperature Li-ion/metal batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2022, 34(15): doi: 10.1002/adma.202107899. |
7 | JIN C R. Comment on "multiphase, multiscale chemomechanics at extreme low temperatures: Battery electrodes for operation in a wide temperature range"[J]. Advanced Energy Materials, 2022, 12(25): doi: 10.1002/aenm.202200686. |
8 | LUO D, LI M, ZHENG Y, et al. Electrolyte design for lithium metal anode-based batteries toward extreme temperature application[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2021, 8(18): doi: 10.1002/advs.202101051. |
9 | WANG J H, ZHENG Q F, FANG M M, et al. Concentrated electrolytes widen the operating temperature range of lithium-ion batteries[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2021, 8(18): doi: 10.1002/advs.202101646. |
10 | GU Y X, FANG S H, YANG L, et al. A non-flammable electrolyte for long-life lithium ion batteries operating over a wide-temperature range[J]. Journal of Materials Chemistry A, 2021, 9(27): 15363-15372. |
11 | ZHANG S, XU K, JOW T. Low-temperature performance of Li-ion cells with a LiBF4-based electrolyte[J]. Journal of Solid State Electrochemistry, 2003, 7(3): 147-151. |
12 | KAFLE J, HARRIS J, CHANG J, et al. Development of wide temperature electrolyte for graphite/LiNiMnCoO2 Li-ion cells: High throughput screening[J]. Journal of Power Sources, 2018, 392: 60-68. |
13 | LIU B, LI Q Y, ENGELHARD M H, et al. Constructing robust electrode/electrolyte interphases to enable wide temperature applications of lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(24): 21496-21505. |
14 | LI Q, LIU G, CHENG H R, et al. Low-temperature electrolyte design for lithium-ion batteries: Prospect and challenges[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2021, 27(64): 15842-15865. |
15 | 张丽娟, 周园, 孙艳霞, 等. LiBF4/LiODFB混合盐电解液的低温性能[J]. 电池, 2018, 48(3): 138-141. |
ZHANG L J, ZHOU Y, SUN Y X, et al. Low temperature performance of LiBF4/LiODFB blend salts electrolyte[J]. Battery Bimonthly, 2018, 48(3): 138-141. | |
16 | LI S Y, LI X P, LIU J L, et al. A low-temperature electrolyte for lithium-ion batteries[J]. Ionics, 2015, 21(4): 901-907. |
17 | QIN M S, LIU M C, ZENG Z Q, et al. Rejuvenating propylene carbonate-based electrolyte through nonsolvating interactions for wide-temperature Li-ions batteries[J]. Advanced Energy Materials, 2022, 12(48): doi: 10.1002/aenm.202201801. |
18 | FAN X L, JI X, CHEN L, et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents[J]. Nature Energy, 2019, 4(10): 882-890. |
19 | MA Z K, CHEN J W, VATAMANU J, et al. Expanding the low-temperature and high-voltage limits of aqueous lithium-ion battery[J]. Energy Storage Materials, 2022, 45: 903-910. |
20 | XU G J, HUANG S Q, CUI Z L, et al. Functional additives assisted ester-carbonate electrolyte enables wide temperature operation of a high-voltage (5 V-Class) Li-ion battery[J]. Journal of Power Sources, 2019, 416: 29-36. |
21 | HOLOUBEK J, LIU H D, WU Z H, et al. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature[J]. Nature Energy, 2021, 6(3): 303-313. |
22 | PLICHTA E J, BEHL W K. A low-temperature electrolyte for lithium and lithium-ion batteries[J]. Journal of Power Sources, 2000, 88(2): 192-196. |
23 | KUMAR G, VASUDEVAN S, MUNIYANDI N. Conductivity of low-temperature electrolytes for magnesium batteries[J]. Journal of Power Sources, 1992, 39(2): 155-161. |
24 | YANG Y, YIN Y J, DAVIES D M, et al. Liquefied gas electrolytes for wide-temperature lithium metal batteries[J]. Energy & Environmental Science, 2020, 13(7): 2209-2219. |
25 | XU K, VON CRESCE A, LEE U. Differentiating contributions to "ion transfer" barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface[J]. Langmuir, 2010, 26(13): 11538-11543. |
26 | ZHANG S S, JOW T R, AMINE K, et al. LiPF6-EC-EMC electrolyte for Li-ion battery[J]. Journal of Power Sources, 2002, 107(1): 18-23. |
27 | 李斌, 陈占军, 黄文达. 双盐电解液改善LiFePO4/石墨电池的高低温性能[J]. 电池, 2019, 49(6): 502-505. |
LI B, CHEN Z J, HUANG W D. Improving high and low temperature performance of LiFePO4/graphite battery with double-salt electrolyte[J]. Battery Bimonthly, 2019, 49(6): 502-505. | |
28 | ZHOU H M, XIAO K W, LI J. Lithium difluoro(oxalate)borate and LiBF4 blend salts electrolyte for LiNi0.5Mn1.5O4 cathode material[J]. Journal of Power Sources, 2016, 302: 274-282. |
29 | MANDAL B K, PADHI A K, SHI Z, et al. New low temperature electrolytes with thermal runaway inhibition for lithium-ion rechargeable batteries[J]. Journal of Power Sources, 2006, 162(1): 690-695. |
30 | WU X Y, DU Z J. Study of the corrosion behavior of LiFSI based electrolyte for Li-ion cells[J]. Electrochemistry Communications, 2021, 129: doi: 10.1016/j.elecom.2021.107088. |
31 | 李光珠, 陈坤, 朱阳阳, 等. 使用新型电解液的磷酸铁锂电池高低温性能[J]. 电源技术, 2019, 43(5): 765-767, 787. |
LI G Z, CHEN K, ZHU Y Y, et al. Behavior of LiFePO4 batteries in novel electrolyte at high/low temperature[J]. Chinese Journal of Power Sources, 2019, 43(5): 765-767, 787. | |
32 | XU K, ZHANG S S, LEE U, et al. LiBOB: Is it an alternative salt for lithium ion chemistry?[J]. Journal of Power Sources, 2005, 146(1/2): 79-85. |
33 | CHO Y G, LI M Q, HOLOUBEK J, et al. Enabling the low-temperature cycling of NMC||Graphite pouch cells with an ester-based electrolyte[J]. ACS Energy Letters, 2021, 6(5): 2016-2023. |
34 | XU G J, SHANGGUAN X H, DONG S M, et al. Formulation of blended-lithium-salt electrolytes for lithium batteries[J]. Angewandte Chemie International Edition, 2020, 59(9): 3400-3415. |
35 | 朱才建. NCM811材料电解液低温性能和NCM523材料循环性能改性研究[D]. 赣州: 江西理工大学, 2019. |
ZHU C J. Study on modification of electrolyte low temperature performance of NCM811 material and cycle performance of NCM523 material[D]. Ganzhou: Jiangxi University of Science and Technology, 2019. | |
36 | 边海燕. 低温锂离子电池电解液的设计开发[D]. 北京: 中国石油大学(北京), 2020. |
BIAN H Y. Design and development of low temperature electrolyte for lithium battery[D]. Beijing: China University of Petroleum (Beijing), 2020. | |
37 | LI Q Y, JIAO S H, LUO L L, et al. Wide-temperature electrolytes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(22): 18826-18835. |
38 | LOGAN E R, TONITA E M, GERING K L, et al. A study of the physical properties of Li-ion battery electrolytes containing esters[J]. Journal of the Electrochemical Society, 2018, 165(2): doi: 10.1149/2.0271802jes. |
39 | HOLOUBEK J, KIM K, YIN Y J, et al. Electrolyte design implications of ion-pairing in low-temperature Li metal batteries[J]. Energy & Environmental Science, 2022, 15(4): 1647-1658. |
40 | ZHANG W L, LU Y, WAN L, et al. Engineering a passivating electric double layer for high performance lithium metal batteries[J]. Nature Communications, 2022, 13(1): 1-12. |
41 | TAN S, RODRIGO U N D, SHADIKE Z, et al. Novel low-temperature electrolyte using isoxazole as the main solvent for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(21): 24995-25001. |
42 | CHENG H R, SUN Q J, LI L L, et al. Emerging era of electrolyte solvation structure and interfacial model in batteries[J]. ACS Energy Letters, 2022, 7(1): 490-513. |
43 | YU Z A, WANG H S, KONG X, et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries[J]. Nature Energy, 2020, 5(7): 526-533. |
44 | SU C C, HE M N, AMINE R, et al. Solvating power series of electrolyte solvents for lithium batteries[J]. Energy & Environmental Science, 2019, 12(4): 1249-1254. |
45 | QIAN Y X, HU S G, ZOU X S, et al. How electrolyte additives work in Li-ion batteries[J]. Energy Storage Materials, 2019, 20: 208-215. |
46 | JONES J P, SMART M C, KRAUSE F C, et al. The effect of electrolyte additives upon lithium plating during low temperature charging of graphite-LiNiCoAlO2 lithium-ion three electrode cells[J]. Journal of the Electrochemical Society, 2020, 167(2): doi: 10.1149/1945-7111/ab6bc2. |
47 | 高宏宇. 电解液添加剂对铅酸电池低温性能影响的研究[D]. 长春: 吉林大学, 2020. |
GAO H Y. Study on the influence of electrolyte additives on the low temperature performance of lead-acid batteries[D]. Changchun: Jilin University, 2020. | |
48 | 吕伟霞. 高性能锂离子电池电解液配方的设计及性能调控[D]. 赣州: 江西理工大学, 2021. |
LÜ/LV/LU/LYU W X. Design and performance control of electrolyte formulation for high-performance lithium-ion batteries[D]. Ganzhou: Jiangxi University of Science and Technology, 2021. | |
49 | 左文卿. 基于DTA/FEC添加剂的锂离子电池低温性能研究[D]. 徐州: 中国矿业大学, 2019. |
ZUO W Q. Research on low temperature performance of lithium ion batteries based on DTA/FEC additives[D]. Xuzhou: China University of Mining and Technology, 2019. | |
50 | YANG B W, ZHANG H, YU L, et al. Lithium difluorophosphate as an additive to improve the low temperature performance of LiNi0.5Co0.2Mn0.3O2/graphite cells[J]. Electrochimica Acta, 2016, 221: 107-114. |
51 | HAREGEWOIN A M, WOTANGO A S, HWANG B J. Electrolyte additives for lithium ion battery electrodes: Progress and perspectives[J]. Energy & Environmental Science, 2016, 9(6): 1955-1988. |
52 | LIU X, SUN X H, SHI X X, et al. Low-temperature and high-performance Si/graphite composite anodes enabled by sulfite additive[J]. Chemical Engineering Journal, 2021, 421: doi: 10.1016/j.cej.2020.127782. |
53 | 姜文博, 王宥宏, 张俊婷, 等. EC基电解液添加剂对锂离子电池性能的影响[J]. 电池, 2022, 52(2): 144-147. |
JIANG W B, WANG Y H, ZHANG J T, et al. Effect of EC-based electrolyte additive on the performance of Li-ion battery[J]. Battery Bimonthly, 2022, 52(2): 144-147. | |
54 | LAVI O, LUSKI S, SHPIGEL N, et al. Electrolyte solutions for rechargeable Li-ion batteries based on fluorinated solvents[J]. ACS Applied Energy Materials, 2020, 3(8): 7485-7499. |
55 | 马国强, 王莉, 张建君, 等. 含有氟代溶剂或含氟添加剂的锂离子电解液[J]. 化学进展, 2016, 28(9): 1299-1312. |
MA G Q, WANG L, ZHANG J J, et al. Lithium-ion battery electrolyte containing fluorinated solvent and additive[J]. Progress in Chemistry, 2016, 28(9): 1299-1312. | |
56 | LV W X, ZHU C J, CHEN J, et al. High performance of low-temperature electrolyte for lithium-ion batteries using mixed additives[J]. Chemical Engineering Journal, 2021, 418: doi: 10.1016/j.cej.2021.129400. |
57 | SUN T J, ZHENG S B, DU H H, et al. Synergistic effect of cation and anion for low-temperature aqueous zinc-ion battery[J]. Nano-Micro Letters, 2021, 13(1): doi: 10.1007/s40820-021-00733-0. |
58 | ZHU F L, BAO H F, WU X S, et al. High-performance metal–organic framework-based single ion conducting solid-state electrolytes for low-temperature lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(46): 43206-43213. |
59 | TAN D H S, CHEN Y T, YANG H D, et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes[J]. Science, 2021, 373(6562): 1494-1499. |
60 | XU S J, SUN Z H, SUN C G, et al. Homogeneous and fast ion conduction of PEO-based solid-state electrolyte at low temperature[J]. Advanced Functional Materials, 2020, 30(51): doi: 10.1002/adfm.202007172. |
61 | REN W H, ZHANG Y F, LV R X, et al. In-situ formation of quasi-solid polymer electrolyte for improved lithium metal battery performances at low temperatures[J]. Journal of Power Sources, 2022, 542: doi: 10.1016/j.jpowsour.2022.231773. |
[1] | 姚逸鸣, 栾伟玲, 陈莹, 孙敏. 基于光学显微镜的锂离子电池材料老化衰减原位研究进展[J]. 储能科学与技术, 2023, 12(3): 777-791. |
[2] | 常修亮, 李希超, 贾隆舟, 韦守李, 王敬豪, 戴作强, 郑莉莉. 过充循环老化电池产热特性[J]. 储能科学与技术, 2023, 12(3): 685-697. |
[3] | 刘树港, 蒙波, 李政隆, 杨亚雄, 陈建. Li x (Mg, Ni, Zn, Cu, Co) 1-x O高熵氧化物负极材料电化学储锂特性[J]. 储能科学与技术, 2023, 12(3): 743-753. |
[4] | 王志福, 罗崴, 闫愿, 徐崧, 郝文美, 周聪林. 基于GAPSO-FNN神经网络的锂离子电池传感器故障诊断[J]. 储能科学与技术, 2023, 12(2): 602-608. |
[5] | 张德柳, 张言, 王海, 王佳东, 高宣雯, 刘朝孟, 杨东润, 骆文彬. 镁掺杂协同氧化铝包覆优化锂离子电池高镍正极材料[J]. 储能科学与技术, 2023, 12(2): 339-348. |
[6] | 杨帆, 和嘉睿, 陆鸣, 陆玲霞, 于淼. 基于BP-UKF算法的锂离子电池SOC估计[J]. 储能科学与技术, 2023, 12(2): 552-559. |
[7] | 张慧敏, 王京, 王一博, 郑家新, 邱景义, 曹高萍, 张浩. 锂离子电池SEI多尺度建模研究展望[J]. 储能科学与技术, 2023, 12(2): 366-382. |
[8] | 朱文凯, 周星, 刘亚杰, 张涛, 宋元明. 基于递推门控循环单元神经网络的锂离子电池荷电状态实时估计方法[J]. 储能科学与技术, 2023, 12(2): 570-578. |
[9] | 张玉龙, 栾伟玲, 吴森明. 基于外特性方法的锂离子电池析锂及可逆锂回嵌定量分析[J]. 储能科学与技术, 2023, 12(2): 529-535. |
[10] | 王放放, 冯祥明, 赵光金, 夏大伟, 胡玉霞, 陈卫华. 电化学阻抗谱识别不同化学体系退役动力锂离子电池[J]. 储能科学与技术, 2023, 12(2): 609-614. |
[11] | 郑瀚, 来沛霈, 田晓华, 孙卓, 张哲娟. 多级碳复合的大尺寸硅颗粒在锂离子电池负极中的性能[J]. 储能科学与技术, 2023, 12(1): 23-34. |
[12] | 郭雨竹, 梁春军, 孙馥林, 宫宏康, 宋奇, 朱婷, 张晨晖. 碳电极浆料作为阴极材料的快速充放电铝离子电池[J]. 储能科学与技术, 2023, 12(1): 16-22. |
[13] | 何骁龙, 石晓龙, 王子阳, 韩路豪, 姚斌. 过充、过热及其共同作用下车用三元锂离子电池热失控特性[J]. 储能科学与技术, 2023, 12(1): 218-226. |
[14] | 邓林旺, 冯天宇, 舒时伟, 郭彬, 张子峰. 锂离子电池无损析锂检测研究进展[J]. 储能科学与技术, 2023, 12(1): 263-277. |
[15] | 袁紫微, 林楚园, 袁紫嫣, 孙晓丽, 钱庆荣, 陈庆华, 曾令兴. 锌离子电池低温性能研究进展[J]. 储能科学与技术, 2023, 12(1): 278-298. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||