| 1 | WANG Z D, TUO X P, ZHOU J Q, et al. Performance study of large capacity industrial lead‑carbon battery for energy storage[J]. Journal of Energy Storage, 2022, 55: doi: 10.1016/j.est.2022.105398. | 
																													
																						| 2 | 卢奇秀. 铅炭电池:电化学储能新赛道[N]. 中国能源报, 2022-05-30. | 
																													
																						| 3 | 朱微. 基于铅炭电池运行特性的储能电池组功率控制策略研究[D]. 吉林: 东北电力大学, 2020. | 
																													
																						|  | ZHU W. Research on power control strategy of energy storage battery pack based on operation characteristics of lead-carbon battery[D]. Jilin: Northeast Dianli University, 2020. | 
																													
																						| 4 | 欧阳佳佳. 储能电池管理系统研究[D]. 杭州: 浙江大学, 2016. | 
																													
																						|  | OUYANG J J. Research on energy storage battery management system[D]. Hangzhou: Zhejiang University, 2016. | 
																													
																						| 5 | 汪伟, 黄河, 龙宇舟, 等. 基于改进安时积分法的动力电池SOC估算[J]. 客车技术与研究, 2021, 43(3): 12-14. | 
																													
																						|  | WANG W, HUANG H, LONG Y Z, et al. SOC estimation of power battery based on improved ampere-hour integration method[J]. Bus & Coach Technology and Research, 2021, 43(3): 12-14. | 
																													
																						| 6 | 杨世春, 华旸, 顾启蒙, 等. 锂离子电池SOC及容量的多尺度联合估计[J]. 北京航空航天大学学报, 2020, 46(8): 1444-1452. | 
																													
																						|  | YANG S C, HUA Y, GU Q M, et al. Multi-scale joint estimation of SOC and capacity of lithium-ion battery[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(8): 1444-1452. | 
																													
																						| 7 | 范汝新, 张宵洋, 张振福, 等. 锂电池能量状态与功率状态的联合估计[J]. 电源技术, 2021, 45(10): 1252-1255, 1259. | 
																													
																						|  | FAN R X, ZHANG X Y, ZHANG Z F, et al. Joint estimation of state of energy and state of power of lithium battery[J]. Chinese Journal of Power Sources, 2021, 45(10): 1252-1255, 1259. | 
																													
																						| 8 | 刘雨洋, 王顺利, 谢滟馨, 等. 基于在线参数辨识和改进2RC-PNGV模型的锂离子电池建模与SOC估算研究[J]. 储能科学与技术, 2021, 10(6): 2312-2317. | 
																													
																						|  | LIU Y Y, WANG S L, XIE Y X, et al. Research on Li-ion battery modeling and SOC estimation based on online parameter identification and improved 2RC-PNGV model[J]. Energy Storage Science and Technology, 2021, 10(6): 2312-2317. | 
																													
																						| 9 | 谈发明, 赵俊杰, 李秋烨. 基于简化滞回OCV模型的锂电池SOC自适应估计策略[J]. 中国电机工程学报, 2021, 41(2): 703-715. | 
																													
																						|  | TAN F M, ZHAO J J, LI Q Y. Adaptive SOC estimation strategy for lithium battery based on simplified hysteresis OCV model[J]. Proceedings of the CSEE, 2021, 41(2): 703-715. | 
																													
																						| 10 | 熊然, 王顺利, 于春梅, 等. 基于Thevenin模型和改进扩展卡尔曼的特种机器人锂离子电池SOC估算方法[J]. 储能科学与技术, 2021, 10(2): 695-704. | 
																													
																						|  | XIONG R, WANG S L, YU C M, et al. Research on the estimation method for lithium-ion battery SOC of special robots based on Thevenin model and improved extended Kalman[J]. Energy Storage Science and Technology, 2021, 10(2): 695-704. | 
																													
																						| 11 | 刘鑫蕊, 常鹏, 孙秋野. 基于XGBoost和无迹卡尔曼滤波自适应混合预测的电网虚假数据注入攻击检测[J]. 中国电机工程学报, 2021, 41(16): 5462-5476. | 
																													
																						|  | LIU X R, CHANG P, SUN Q Y. Grid false data injection attacks detection based on XGBoost and unscented Kalman filter adaptive hybrid prediction[J]. Proceedings of the CSEE, 2021, 41(16): 5462-5476. | 
																													
																						| 12 | 杨帆, 和嘉睿, 陆鸣, 等. 基于BP-UKF算法的锂离子电池SOC估计[J/OL]. 储能科学与术: 1-8[2022-12-06]. doi: 10.19799/j.cnki.2095-4239.2022.0574. | 
																													
																						|  | YANG F, HE J R, LU M, et al. SOC estimation of lithium-ion battery based on BP-UKF algorithm[J/OL]. Energy Storage Science and Technology:1-8[2022-12-06]. doi: 10.19799/j.cnki.2095-4239.2022.0574. | 
																													
																						| 13 | 李路路, 陶正顺, 潘庭龙, 等. 锂电池分数阶建模及SOC估计策略研究[J/OL].储能科学与技术: 1-9[2022-12-06]. doi: 10.19799/j.cnki. 2095-4239.2022.0551. | 
																													
																						|  | LI L L, TAO Z S, PAN T L, et al. Research on fractional order modeling and SOC estimation strategy of lithium battery[J/OL]. Energy Storage Science and Technology: 1-9[2022-12-06]. doi: 10.19799/j.cnki.2095-4239.2022.0551. | 
																													
																						| 14 | KNAP V, STROE D I. Effects of open-circuit voltage tests and models on state-of-charge estimation for batteries in highly variable temperature environments: Study case nano-satellites[J]. Journal of Power Sources, 2021, 498: doi: 10.1016/j.jpowsour.2021.229913. | 
																													
																						| 15 | DONGMIN KANG S, CHUEH W C. Galvanostatic intermittent titration technique reinvented: Part I. A critical review[J]. Journal of the Electrochemical Society, 2021, 168(12): doi: 10.1021/jp120504. | 
																													
																						| 16 | JIANG C, WANG S L, WU B, et al. A state-of-charge estimation method of the power lithium-ion battery in complex conditions based on adaptive square root extended Kalman filter[J]. Energy, 2021, 219: doi:10.1016/j.energy.2020.119603. | 
																													
																						| 17 | 程琳瑞, 叶芯榕, 程桂石, 等. 锂电池SOC算法的研究进展[J]. 蓄电池, 2021, 58(5): 230-233, 245. | 
																													
																						|  | CHENG L R, YE X R, CHENG G S, et al. Advances in the study of SOC algorithms for lithium batteries[J]. Chinese LABAT Man, 2021, 58(5): 230-233, 245. |