| 1 | 
																						 
											 胡振恺, 雷博, 李勇琦, 等. 储能用锂离子电池安全性测试与评估方法比较[J]. 储能科学与技术, 2022, 11(5): 1650-1656.
											 											 | 
										
																													
																						 | 
																						 
											 HU Z K, LEI B, LI Y Q, et al. Comparative study on safety test and evaluation methods of lithium-ion batteries for energy storage[J]. Energy Storage Science and Technology, 2022, 11(5): 1650-1656.
											 											 | 
										
																													
																						| 2 | 
																						 
											 闫啸宇, 周思达, 卢宇, 等. 锂离子电池容量衰退机理与影响因素研究[J/OL]. 北京航空航天大学学报:1-13.[2022-04-20]. https://doi.org/10.13700/j.bh.1001-5965.2021.0458.
											 											 | 
										
																													
																						 | 
																						 
											 YAN X Y, ZHOU S D, LU Y, et al. Study on the capacity decline mechanism and influencing factors of lithium-ion batteries[J/OL]. Journal of Beijing University of Aeronautics and Astronautics: 1-13.[2022-04-20]. https://doi.org/10.13700/j.bh.1001-5965.2021.0458.
											 											 | 
										
																													
																						| 3 | 
																						 
											 蔡艳平, 陈万, 苏延召, 等. 锂离子电池剩余寿命预测方法综述[J]. 电源技术, 2021, 45(5): 678-682.
											 											 | 
										
																													
																						 | 
																						 
											 CAI Y P, CHEN W, SU Y Z, et al. Review of remaining useful life prediction for lithium ion batteries[J]. Chinese Journal of Power Sources, 2021, 45(5): 678-682.
											 											 | 
										
																													
																						| 4 | 
																						 
											 索梦磊, 李俊夫, 赵明, 等. 锂离子电池寿命预测研究进展[J]. 电池工业, 2020, 24(5): 255-263.
											 											 | 
										
																													
																						 | 
																						 
											 SUO M L, LI J F, ZHAO M, et al. Research progress of lithium ion battery life prediction[J]. Chinese Battery Industry, 2020, 24(5): 255-263.
											 											 | 
										
																													
																						| 5 | 
																						 
											 张若可, 郭永芳, 余湘媛, 等. 基于数据驱动的锂离子电池RUL预测综述[J/OL]. 电源学报:1-15.[2022-04-20]. http://kns.cnki.net/kcms/detail/12.1420.tm.20210824.1932.014.html.
											 											 | 
										
																													
																						 | 
																						 
											 ZHANG R K, GUO Y F, YU X Y, et al. A review of RUL prediction of lithium-ion batteries based on data-driven[J/OL]. Journal of Power Sources: 1-15. [2022-04-20]. http://kns.cnki.net/kcms/detail/12.1420.tm.20210824.1932.014.html.
											 											 | 
										
																													
																						| 6 | 
																						 
											 VIANI L, ROSI P, ROTUNNO E, et al. Enhancing electron computational ghost imaging using artificial neural networks[J]. Microscopy and Microanalysis, 2022, 28(S1): 2242-2244.
											 											 | 
										
																													
																						| 7 | 
																						 
											 ZHANG Y Y. MOOC teaching model of basic education based on fuzzy decision tree algorithm[J]. Computational Intelligence and Neuroscience, 2022: doi:10.1155/2022/3175028.
											 											 | 
										
																													
																						| 8 | 
																						 
											 GANAIE M A, TANVEER M, SUGANTHAN P N, et al. Oblique and rotation double random forest[J]. Neural Networks, 2022, 153: 496-517.
											 											 | 
										
																													
																						| 9 | 
																						 
											 TEPE C, DEMIR M C. Real-time classification of EMG myo armband data using support vector machine[J]. IRBM, 2022, 43(4): 300-308.
											 											 | 
										
																													
																						| 10 | 
																						 
											 KARTHIK C R, RAGHUNANDAN, ASHWATH RAO B, et al. Forecasting variance of NiftyIT index with RNN and DNN[J]. Journal of Physics: Conference Series, 2022, 2161(1): 012005.
											 											 | 
										
																													
																						| 11 | 
																						 
											 USHARANI B. ILF-LSTM: Enhanced loss function in LSTM to predict the sea surface temperature[J]. Soft Computing, 2022: 1-13.
											 											 | 
										
																													
																						| 12 | 
																						 
											 吕明珠. 基于改进LSTM的滚动轴承性能退化趋势预测[J]. 轴承, 2022(4): 70-76.
											 											 | 
										
																													
																						 | 
																						 
											 LÜ M Z. Performance degradation trend prediction of rolling bearings based on improved LSTM[J]. Bearing, 2022(4): 70-76.
											 											 | 
										
																													
																						| 13 | 
																						 
											 BOU-RABEE M A, NAZ M Y, ALBALAA I E, et al. BiLSTM network-based approach for solar irradiance forecasting in continental climate zones[J]. Energies, 2022, 15(6): 2226.
											 											 | 
										
																													
																						| 14 | 
																						 
											 SU Y, KONG X W, LIU G B. Advertising popularity feature collaborative recommendation algorithm based on attention-LSTM model[J]. Security and Communication Networks, 2021: 1-11.
											 											 | 
										
																													
																						| 15 | 
																						 
											 朱张莉, 饶元, 吴渊, 等. 注意力机制在深度学习中的研究进展[J]. 中文信息学报, 2019, 33(6): 1-11.
											 											 | 
										
																													
																						 | 
																						 
											 ZHU Z L, RAO Y, WU Y, et al. Research progress of attention mechanism in deep learning[J]. Journal of Chinese Information Processing, 2019, 33(6): 1-11.
											 											 | 
										
																													
																						| 16 | 
																						 
											 GE F, ZHANG Y, XU J, et al. Prediction of disease-associated nsSNPs by integrating multi-scale ResNet models with deep feature fusion[J]. Briefings in Bioinformatics, 2022, 23(1): doi:10.1093/bib/bbab530.
											 											 | 
										
																													
																						| 17 | 
																						 
											 王英楷, 张红, 王星辉. 基于1DCNN-LSTM的锂离子电池SOH预测[J]. 储能科学与技术, 2022, 11(1): 240-245.
											 											 | 
										
																													
																						 | 
																						 
											 WANG Y K, ZHANG H, WANG X H. Hybrid 1DCNN-LSTM model for predicting lithium ion battery state of health[J]. Energy Storage Science and Technology, 2022, 11(1): 240-245.
											 											 | 
										
																													
																						| 18 | 
																						 
											 ZHU M L, WANG Q Q, LUO J L. Emotion recognition based on dynamic energy features using a Bi-LSTM network[J]. Frontiers in Computational Neuroscience, 2022, 15: doi:10.3389/fncom.2021.741086.
											 											 | 
										
																													
																						| 19 | 
																						 
											 史永胜, 施梦琢, 丁恩松, 等. 基于CEEMDAN-LSTM组合的锂离子电池寿命预测方法[J]. 工程科学学报, 2021, 43(7): 985-994.
											 											 | 
										
																													
																						 | 
																						 
											 SHI Y S, SHI M Z, DING E S, et al. Combined prediction method of lithium-ion battery life based on CEEMDAN-LSTM[J]. Chinese Journal of Engineering, 2021, 43(7): 985-994.
											 											 | 
										
																													
																						| 20 | 
																						 
											 刘芊彤, 邢远秀. 基于VMD-PSO-GRU模型的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2023, 12(1): 236-246.
											 											 | 
										
																													
																						 | 
																						 
											 LIU Q T, XING Y X. Remaining life prediction of lithium-ion battery based on VMD-PSO-GRU model[J]. Energy Storage Science and Technology, 2023, 12(1): 236-246.
											 											 |