储能科学与技术 ›› 2023, Vol. 12 ›› Issue (4): 1215-1222.doi: 10.19799/j.cnki.2095-4239.2022.0652

• 储能测试与评价 • 上一篇    下一篇

基于ResNet-Bi-LSTM-Attention的锂离子电池剩余使用寿命预测

王朋凯(), 张新燕(), 张光昊   

  1. 新疆大学电气工程学院,新疆 乌鲁木齐 830046
  • 收稿日期:2022-11-04 修回日期:2022-11-20 出版日期:2023-04-05 发布日期:2023-05-08
  • 通讯作者: 张新燕 E-mail:1360174241@qq.com;13203987062@163.com
  • 作者简介:王朋凯(1996—),男,硕士研究生,研究方向为锂离子电池寿命预测,E-mail:1360174241@qq.com
  • 基金资助:
    新疆维吾尔自治区自然科学基金(2021D01C044);国家自然科学基金(51667018)

Remaining useful life prediction of lithium-ion batteries based on ResNet-Bi-LSTM-Attention model

Pengkai WANG(), Xinyan ZHANG(), Guanghao ZHANG   

  1. School of Electrical Engineering, Xinjiang University, Urumqi 830046, Xinjiang China
  • Received:2022-11-04 Revised:2022-11-20 Online:2023-04-05 Published:2023-05-08
  • Contact: Xinyan ZHANG E-mail:1360174241@qq.com;13203987062@163.com

摘要:

锂离子电池剩余使用寿命(RUL)预测是锂离子电池研究的一个重要方向,通过对RUL的准确预测,可以降低锂离子电池出现事故的概率。针对锂离子电池RUL的准确预测,该研究提出一种综合残差神经网络(ResNet)和双向长短期记忆网络(Bi-LSTM)的优势,并且加入注意力机制(Attention)的锂离子电池RUL预测模型。首先选取能够表现电池寿命的特征参数作为输入量,利用ResNet提取输入数据的隐含特征信息,然后利用Bi-LSTM对时间序列信息进行预测,并且结合注意力机制对预测结果进行权重分配,得到最终的锂离子电池的RUL预测结果。通过美国马里兰大学(CALCE)提供的开源数据集进行锂离子电池RUL预测试验,并与现有的预测模型进行对比试验,对比模型的预测结果,试验结果表明提出的ResNet-Bi-LSTM-Attention模型能够准确地进行锂离子电池RUL预测,各项误差都比较低,具有较好的精度和准确性。最后使用美国航空航天局(NASA)提供的锂离子电池开源数据集进行泛化性实验,证明了ResNet-Bi-LSTM-Attention模型在不同电池RUL预测中具有良好的准确性,可以被广泛使用。

关键词: 锂离子电池, 残差神经网络, 双向长短期记忆网络, 注意力机制, 剩余使用寿命预测

Abstract:

Accurate prediction of remaining useful life (RUL) of lithium-ion batteries is an important research topic as it can help reduce the risks of lithium-ion battery accidents. Thus, this research proposes a prediction model of RUL of lithium-ion batteries that comprises an attention mechanism and combines the advantages of residual neural network (ResNet) and bidirectional short-term memory network (Bi LSTM). For this, the characteristic parameters that can represent the battery life were selected as the input quantity. ResNet was used to extract the implicit characteristic information of the input data and Bi LSTM was used to predict the time series information. The attention mechanism was used to distribute the weight of the prediction results so as to obtain the final RUL prediction results of lithium-ion batteries. The RUL prediction test of lithium-ion batteries was carried out using the open-source dataset provided by the University of Maryland (CALCE) of the United States, and the obtained results were compared with that of the existing prediction models. The test results show that the proposed model can accurately predict the RUL of lithium-ion batteries, with relatively low errors and good accuracy. Finally, the generalization experiment was carried out using the open-source dataset of lithium-ion batteries provided by NASA, and its results confirmed that the proposed model has good accuracy in predicting the RUL of different batteries and, thus, has wide applications.

Key words: lithium-ion battery, residual neural network, bidirectional long short-term memory network, attention mechanism, remaining service life prediction

中图分类号: