储能科学与技术 ›› 2023, Vol. 12 ›› Issue (4): 1223-1233.doi: 10.19799/j.cnki.2095-4239.2022.0706

• 储能测试与评价 • 上一篇    下一篇

基于分层对齐迁移学习的锂离子电池容量估计

翟智1,2(), 王福金1,2, 邸一1,2, 马珮羽1,2, 赵志斌1,2(), 陈雪峰1,2   

  1. 1.西安交通大学机械工程学院,陕西 西安 710049
    2.装备运行安全保障与智能监控国家地方;联合工程研究中心,陕西 西安 712046
  • 收稿日期:2022-11-30 修回日期:2022-12-30 出版日期:2023-04-05 发布日期:2023-05-08
  • 通讯作者: 赵志斌 E-mail:zhaizhi@xjtu.edu.cn;zhaozhibin@xjtu.edu.cn
  • 作者简介:翟智(1985—),女,博士,副研究员,主要研究方向为航天器电源系统故障诊断、航天动力系统健康管理,E-mail:zhaizhi@xjtu.edu.cn
  • 基金资助:
    国家自然科学基金(52105116);中国博士后科学基金项目(2021TQ0263)

Hierarchical alignment transfer learning for lithium-ion battery capacity estimation

Zhi ZHAI1,2(), Fujin WANG1,2, Yi DI1,2, Peiyu MA1,2, Zhibin ZHAO1,2(), Xuefeng CHEN1,2   

  1. 1.School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
    2.National and Local Joint Engineering Research Center for Equipment Operation Safety Assurance and Intelligent Monitoring, Xi'an 712046, Shaanxi, China
  • Received:2022-11-30 Revised:2022-12-30 Online:2023-04-05 Published:2023-05-08
  • Contact: Zhibin ZHAO E-mail:zhaizhi@xjtu.edu.cn;zhaozhibin@xjtu.edu.cn

摘要:

精准的容量估计对锂离子电池健康管理和预测性维护具有重要意义。近年来,数据驱动的方法被广泛应用于锂离子电池容量估计,然而现有的数据驱动方法大多假设训练和测试数据服从相同分布,当此假设不满足时,模型的预测精度快速下降。现有的基于迁移学习的锂离子电池容量估计方法旨在对齐源域和目标域的整体分布,而忽略了不同层内的特征的可迁移性。针对以上问题,研究了深度迁移学习方法不同层之间的特征可迁移属性,提出了基于分层对齐迁移学习(hierarchical alignment transfer learning, HATL)的锂离子电池容量估计方法。首先,构建了一个基于卷积神经网络的特征提取器,考虑不同层特征的可迁移性,对不同层特征施加最大均值差异约束和通道注意力一致性约束,使得特征提取器从源域和目标域提取到的特征相似且模型更加关注域不变特征;然后,特征经过一个预测器得到容量估计值。在公开的锂电池数据集上进行充分验证,并与其他方法进行对比,结果表明,本文所提的HATL方法具有更高的估计精度,明显优于其他方法。证明了迁移学习方法在跨工况容量估计任务中的有效性和优越性。

关键词: 锂离子电池, 容量估计, 分层对齐迁移学习, 最大均值差异, 通道注意力一致性

Abstract:

Accurate estimation of capacity plays an important role in the health management and predictive maintenance of lithium-ion batteries. In recent years, data-driven methods have been widely used in the capacity estimation of lithium-ion battery. However, most of these methods assume that the training and test data obey the same distribution, resulting in a rapid decline in accuracy when the test conditions change. The existing transfer learning methods for lithium-ion battery capacity estimation aim to align the global distribution of source and target domains, while ignoring the transferability of features within different layers. Thus, this study proposes a hierarchical alignment transfer learning method for lithium-ion battery capacity estimation and examines the feature transferability among different layers of the deep transfer learning. First, a feature extractor based on a convolutional neural network was designed. Considering the feature transferability within different layers, the maximum mean discrepancy constraint and channel attention consistency constraint were imposed at different layers of the feature extractor. Thus, the features extracted from the source and target domain are similar, and the feature extractor focuses more on domain-invariant features. A predictor then obtains a capacity estimation value. The experimental results were validated on a public lithium-ion battery dataset and compared with other methods. Our findings show that the proposed method has higher estimation accuracy and is significantly better than other methods. In addition, the findings demonstrated the effectiveness and superiority of the transfer learning method in cross-domain capacity estimation.

Key words: lithium-ion battery, capacity estimation, hierarchical alignment transfer learning, maximum mean discrepancy, channel attention consistency

中图分类号: