1 |
武明虎, 岳程鹏, 张凡, 等. 多尺度分解下GRU-MLR组合的锂电池剩余使用寿命预测方法[J]. 储能科学与技术, 2023, 12(7): 2220-2228.
|
|
WU M H, YUE C P, ZHANG F, et al. Combined GRU-MLR method for predicting the remaining useful life of lithium batteries via multiscale decomposition[J]. Energy Storage Science and Technology, 2023, 12(7): 2220-2228.
|
2 |
KHODADADI SADABADI K, JIN X, RIZZONI G. Prediction of remaining useful life for a composite electrode lithium ion battery cell using an electrochemical model to estimate the state of health[J]. Journal of Power Sources, 2021, 481: 228861.
|
3 |
WANG D, KONG J Z, YANG F F, et al. Battery prognostics at different operating conditions[J]. Measurement, 2020, 151: 107182.
|
4 |
GUHA A, PATRA A, VAISAKH K V. Remaining useful life estimation of lithium-ion batteries based on the internal resistance growth model[C]//2017 Indian Control Conference (ICC). Guwahati, India. IEEE, 2017: 33-38.
|
5 |
ZHANG H, MIAO Q, ZHANG X, et al. An improved unscented particle filter approach for lithium-ion battery remaining useful life prediction[J]. Microelectronics Reliability, 2018, 81: 288-298.
|
6 |
王萍, 范凌峰, 程泽. 基于健康特征参数的锂离子电池SOH和RUL联合估计方法[J]. 中国电机工程学报, 2022, 42(4): 1523-1533, 25.
|
|
WANG P, FAN L F, CHENG Z. A joint state of health and remaining useful life estimation approach for lithium-ion batteries based on health factor parameter[J]. Proceedings of the CSEE, 2022, 42(4): 1523-1533, 25.
|
7 |
廖力, 肖廷奕, 吴铁洲, 等. 基于多健康特征融合的锂电池SOH和RUL预测[J]. 电源技术, 2023, 47(2): 193-198.
|
|
LIAO L, XIAO T Y, WU T Z, et al. SOH and RUL prediction for lithium batteries based on fusion of multiple health features[J]. Chinese Journal of Power Sources, 2023, 47(2): 193-198.
|
8 |
吴忠强, 胡晓宇, 马博岩, 等. 基于 PF-LSTM 的锂电池剩余使用寿命预测[J]. 计量学报, 2023, 44(6): 939-947.
|
|
WU Z Q, HU X Y, MA B Y, et al. Residual service life prediction of lithium batteries based on PF-LSTM [J]. Acta Metrologica Sinica, 2023, 44(6): 939-947.
|
9 |
CHEN D Q, HONG W C, ZHOU X Z. Transformer network for remaining useful life prediction of lithium-ion batteries[J]. IEEE Access, 1975, 10: 19621-19628.
|
10 |
HONG J, LEE D, JEONG E R, et al. Towards the swift prediction of the remaining useful life of lithium-ion batteries with end-to-end deep learning[J]. Applied Energy, 2020, 278: 115646.
|
11 |
董渊昌, 庞晓琼, 贾建芳, 等. 基于SVD-SAE-GPR的锂离子电池RUL预测[J]. 储能科学与技术, 2023, 12(4): 1257-1267.
|
|
DONG Y C, PANG X Q, JIA J F, et al. Remaining useful life prediction of lithium-ion batteries based on SVD-SAE-GPR[J]. Energy Storage Science and Technology, 2023, 12(4): 1257-1267.
|
12 |
LIU K L, SHANG Y L, OUYANG Q, et al. A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery[J]. IEEE Transactions on Industrial Electronics, 2021, 68(4): 3170-3180.
|
13 |
MAO L, XU J, CHEN J J, et al. A LSTM-STW and GS-LM fusion method for lithium-ion battery RUL prediction based on EEMD[J]. Energies, 2020, 13(9): 2380.
|
14 |
WU Z H, HUANG N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
|
15 |
BAI S J, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[J]. arXiv preprint arXiv:, 2018.
|
16 |
CHO K, MERRIENBOER B V, GÜLÇEHRE Ç, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv preprint arXiv:, 2014.
|
17 |
FUKUSHIMA K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J]. Biological Cybernetics, 1980, 36(4): 193-202.
|
18 |
RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323: 533-536.
|
19 |
BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[J]. arXiv preprint arXiv:, 2014.
|
20 |
SAHA B, GOEBEL K. Battery data set[R]. NASA Ames Prognostics Data Repository, 2007.
|