1 |
刘应都, 郭红霞, 欧阳晓平. 氢燃料电池技术发展现状及未来展望[J]. 中国工程科学, 2021, 23(4): 162-171.
|
|
LIU Y D, GUO H X, OUYANG X P. Development status and future prospects of hydrogen fuel cell technology[J]. Strategic Study of CAE, 2021, 23(4): 162-171.
|
2 |
FAN L X, TU Z K, CHAN S H. Recent development of hydrogen and fuel cell technologies: A review[J]. Energy Reports, 2021, 7: 8421-8446.
|
3 |
YUE M L, JEMEI S, ZERHOUNI N, et al. Proton exchange membrane fuel cell system prognostics and decision-making: Current status and perspectives[J]. Renewable Energy, 2021, 179: 2277-2294.
|
4 |
HUA Z G, ZHENG Z X, PAHON E, et al. A review on lifetime prediction of proton exchange membrane fuel cells system[J]. Journal of Power Sources, 2022, 529: 231256.
|
5 |
LIN X F, HU Y Y. State of health estimation for proton exchange membrane fuel cell using strong tracking filter[C]//2020 35th Youth Academic Annual Conference of Chinese Association of Automation (YAC). Zhanjiang, China. IEEE, 2020: 379-383.
|
6 |
LIU J W, LI Q, CHEN W R, et al. Remaining useful life prediction of PEMFC based on long short-term memory recurrent neural networks[J]. International Journal of Hydrogen Energy, 2019, 44(11): 5470-5480.
|
7 |
LI H L, CHEN Q H, ZHANG L Y, et al. Degradation prediction of proton exchange membrane fuel cell based on the multi-inputs Bi-directional long short-term memory[J]. Applied Energy, 2023, 344: 121294.
|
8 |
ZHANG F, WANG B W, GONG Z C, et al. Short-term performance degradation prediction of proton exchange membrane fuel cell based on discrete wavelet transform and Gaussian process regression[J]. Next Energy, 2023, 1(3): 100052.
|
9 |
SUN X L, XIE M K, FU J Q, et al. An improved neural network model for predicting the remaining useful life of proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2023, 48(65): 25499-25511.
|
10 |
JOUIN M, GOURIVEAU R, HISSEL D, et al. Prognostics of PEM fuel cell in a particle filtering framework[J]. International Journal of Hydrogen Energy, 2014, 39(1): 481-494.
|
11 |
CHEN J Y, ZHOU D, LYU C, et al. A novel health indicator for PEMFC state of health estimation and remaining useful life prediction[J]. International Journal of Hydrogen Energy, 2017, 42(31): 20230-20238.
|
12 |
WANG Y P, WU K C, ZHAO H H, et al. Degradation prediction of proton exchange membrane fuel cell stack using semi-empirical and data-driven methods[J]. Energy and AI, 2023, 11: 100205.
|
13 |
TIAN Q C, CHEN H T, DING S, et al. Remaining useful life prediction method of PEM fuel cells based on a hybrid model[J]. Electronics, 2023, 12(18): 3883.
|
14 |
ZHANG Z D, WANG Y X, HE H W, et al. A short- and long-term prognostic associating with remaining useful life estimation for proton exchange membrane fuel cell[J]. Applied Energy, 2021, 304: 117841.
|
15 |
谢滟馨, 王顺利, 史卫豪, 等. 一种用于高保真锂电池SOC估计的无迹粒子滤波新方法[J]. 储能科学与技术, 2021, 10(2): 722-731.
|
|
XIE Y X, WANG S L, SHI W H, et al. A new method of unscented particle filter for high-fidelity lithium-ion battery SOC estimation[J]. Energy Storage Science and Technology, 2021, 10(2): 722-731.
|
16 |
FCLAB Research. IEEE PHM 2014 DATA CHALLENGE[OL]. Belfort, France: 2014. [2020-12-20]. http://eng.fclab.fr/ieee-phm-2014-data-challenge/.
|
17 |
王英楷, 张红, 王星辉. 基于1DCNN-LSTM的锂离子电池SOH预测[J]. 储能科学与技术, 2022, 11(1): 240-245.
|
|
WANG Y K, ZHANG H, WANG X H. Hybrid 1DCNN-LSTM model for predicting lithium ion battery state of health[J]. Energy Storage Science and Technology, 2022, 11(1): 240-245.
|
18 |
SRINIVASAN D. Energy demand prediction using GMDH networks[J]. Neurocomputing, 2008, 72(1/2/3): 625-629.
|
19 |
黄庆泽. 混合驱动的质子交换膜燃料电池寿命预测方法研究[D]. 武汉: 武汉理工大学, 2022.
|
|
HUANG Q Z. Study on hybrid driven life prediction methods of proton exchange membrane fuel cell[D]. Wuhan: Wuhan University of Technology, 2022.
|
20 |
BENAGGOUNE K, YUE M L, JEMEI S, et al. A data-driven method for multi-step-ahead prediction and long-term prognostics of proton exchange membrane fuel cell[J]. Applied Energy, 2022, 313: 118835.
|