1 |
任东生, 冯旭宁, 韩雪冰, 等. 锂离子电池全生命周期安全性演变研究进展[J]. 储能科学与技术, 2018, 7(6): 957-966.
|
|
REN D S, FENG X N, HAN X B, et al. Recent progress on evolution of safety performance of lithium-ion battery during aging process[J]. Energy Storage Science and Technology, 2018, 7(6): 957-966.
|
2 |
朱鸿章, 吴传平, 周天念, 等. 磷酸铁锂和三元锂电池外部过热条件下的热失控特性[J]. 储能科学与技术, 2022, 11(1): 201-210.
|
|
ZHU H Z, WU C P, ZHOU T N, et al. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating[J]. Energy Storage Science and Technology, 2022, 11(1): 201-210.
|
3 |
何骁龙, 石晓龙, 王子阳, 等. 过充、过热及其共同作用下车用三元锂离子电池热失控特性[J]. 储能科学与技术, 2023, 12(1): 218-226.
|
|
HE X L, SHI X L, WANG Z Y, et al. Experimental study on thermal runaway characteristics of vehicle NCM lithium-ion batteries under overcharge, overheating, and their combined effects[J]. Energy Storage Science and Technology, 2023, 12(1): 218-226.
|
4 |
MD SAID M S, MOHD TOHIR M Z. Characterisation of thermal runaway behaviour of cylindrical lithium-ion battery using Accelerating Rate Calorimeter and oven heating[J]. Case Studies in Thermal Engineering, 2021, 28: 101474.
|
5 |
张青松, 刘添添, 赵子恒. 锂离子电池热失控气体燃烧对热失控传播影响的量化方法[J]. 北京航空航天大学学报, 2023, 49(1): 17-22.
|
|
ZHANG Q S, LIU T T, ZHAO Z H. Quantitative method of influence of thermal runaway gas combustion on thermal runaway propagation of lithium-ion battery[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(1): 17-22.
|
6 |
汤元会, 袁博兴, 李杰, 等. 圆柱形锂离子电池在针刺条件下的安全性研究[J/OL]. 储能科学与技术: 1-9[2023-11-20]. https://doi.org/10.19799/j.cnki.2095-4239.2023.0654.
|
|
TANG Y H, YUAN B X, LI J, et al. Safety study of cylindrical lithium-ion batteries under pinning conditions [J/OL]. Energy Storage Science and Technology: 1-9[2023-11-20]. https://doi.org/10.19799/j.cnki.2095-4239.2023.0654.
|
7 |
孙建丹, 汪红辉, 储德韧, 等. 不同荷电状态三元锂离子电池热失控动力学研究[J]. 电源技术, 2023, 47(8): 1040-1045.
|
|
SUN J D, WANG H H, CHU D R, et al. Kinetic study of thermal runaway behaviors of lithium-ion batteries with different SOCs[J]. Chinese Journal of Power Sources, 2023, 47(8): 1040-1045.
|
8 |
杜光超, 郑莉莉, 张志超, 等. 圆柱形高镍三元锂离子电池高温热失控实验研究[J]. 储能科学与技术, 2020, 9(1): 249-256.
|
|
DU G C, ZHENG L L, ZHANG Z C, et al. Experimental study on high temperature thermal runaway of cylindrical high nickel ternary lithium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(1): 249-256.
|
9 |
HUANG Z H, LIU J L, ZHAI H J, et al. Experimental investigation on the characteristics of thermal runaway and its propagation of large-format lithium ion batteries under overcharging and overheating conditions[J]. Energy, 2021, 233: 121103.
|
10 |
LI H, CHEN H D, ZHONG G B, et al. Experimental study on thermal runaway risk of 18650 lithium ion battery under side-heating condition[J]. Journal of Loss Prevention in the Process Industries, 2019, 61: 122-129.
|
11 |
周天念, 吴传平, 陈宝辉. 加热引发三元18650型锂离子电池组的燃烧特性[J]. 储能科学与技术, 2021, 10(2): 558-564.
|
|
ZHOU T N, WU C P, CHEN B H. Burning characteristics of the 18650-type lithium-ion ternary battery pack induced by heating[J]. Energy Storage Science and Technology, 2021, 10(2): 558-564.
|
12 |
张斌, 陈克, 张得胜. 锂离子电池火灾调查方法[J]. 消防科学与技术, 2018, 37(10): 1449-1452.
|
|
ZHANG B, CHEN K, ZHANG D S. Lithium ion battery fire investigation method[J]. Fire Science and Technology, 2018, 37(10): 1449-1452.
|
13 |
郭君, 王海斌, 贺元骅. 不同滥用条件下21700型锂离子电池热失控特性研究[J]. 科技通报, 2021, 37(4): 123-127.
|
|
GUO J, WANG H B, HE Y H. Research on thermal runaway characteristics of 21700-type lithium-ion battery under different abuse conditions[J]. Bulletin of Science and Technology, 2021, 37(4): 123-127.
|
14 |
董海斌, 张少禹, 李毅, 等. NCM811高比能锂离子电池热失控火灾特性[J]. 储能科学与技术, 2019, 8(S1): 65-70.
|
|
DONG H B, ZHANG S Y, LI Y, et al. Thermal runaway fire characteristics of NCM811 high specific energy lithium ion battery[J]. Energy Storage Science and Technology, 2019, 8(S1): 65-70.
|
15 |
毛亚, 白清友, 马尚德, 等. 循环老化对锂离子电池在绝热条件下的产热及热失控影响[J]. 储能科学与技术, 2018, 7(6): 1120-1127.
|
|
MAO Y, BAI Q Y, MA S D, et al. Influence of cycling on the heat-release and thermal runaway of the lithium ion battery under adiabatic condition[J]. Energy Storage Science and Technology, 2018, 7(6): 1120-1127.
|
16 |
ZHANG G X, WEI X Z, CHEN S Q, et al. Revealing the impact of fast charge cycling on the thermal safety of lithium-ion batteries[J]. ACS Applied Energy Materials, 2022, 5(6): 7056-7068.
|
17 |
张青松, 曲奕润. 循环老化三元锂离子电池热失控气体毒性研究[J/OL]. 北京航空航天大学学报: 1-10[2023-10-07]. https://doi.org/10.13700/j.bh.1001-5965.2022.0534.
|
|
ZHANG Q S, QU Y R. Toxicity study of thermal runaway gases in cyclic aging ternary lithium-ion batteries[J/OL]. Journal of Beijing University of Aeronautics and Astronautics: 1-10[2023-10-07]. https://doi.org/10.13700/j.bh.1001-5965.2022.0534.
|
18 |
芮新宇, 冯旭宁, 韩雪冰, 等. 锂离子电池热失控蔓延问题研究综述[J]. 电池工业, 2020, 24(4): 193-201, 205.
|
|
RUI X Y, FENG X N, HAN X B, et al. Review on the thermal runaway propagation of lithium-ion batteries[J]. Chinese Battery Industry, 2020, 24(4): 193-201, 205.
|
19 |
FENG X N, ZHENG S Q, REN D S, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64.
|
20 |
QIN P, SUN J H, WANG Q S. A new method to explore thermal and venting behavior of lithium-ion battery thermal runaway[J]. Journal of Power Sources, 2021, 486: 229357.
|
21 |
STEINHARDT M, GILLICH E I, RHEINFELD A, et al. Low-effort determination of heat capacity and thermal conductivity for cylindrical 18650 and 21700 lithium-ion cells[J]. Journal of Energy Storage, 2021, 42: 103065.
|
22 |
LI H, DUAN Q L, ZHAO C P, et al. Experimental investigation on the thermal runaway and its propagation in the large format battery module with Li(Ni1/3Co1/3Mn1/3)O2 as cathode[J]. Journal of Hazardous Materials, 2019, 375: 241-254.
|
23 |
JIA Z Z, QIN P, LI Z, et al. Analysis of gas release during the process of thermal runaway of lithium-ion batteries with three different cathode materials[J]. Journal of Energy Storage, 2022, 50: 104302.
|
24 |
MAO B B, CHEN H D, CUI Z X, et al. Failure mechanism of the lithium ion battery during nail penetration[J]. International Journal of Heat and Mass Transfer, 2018, 122: 1103-1115.
|