储能科学与技术 ›› 2024, Vol. 13 ›› Issue (3): 963-970.doi: 10.19799/j.cnki.2095-4239.2023.0705

• 储能测试与评价 • 上一篇    下一篇

基于LSTM-UPF混合驱动方法的燃料电池寿命预测

曾其权1(), 罗马吉2(), 杨印龙2, 黄庆泽2   

  1. 1.中广核研究院有限公司,广东 深圳 518000
    2.武汉理工大学汽车工程学院,湖北 武汉 430070
  • 收稿日期:2023-10-11 修回日期:2023-11-19 出版日期:2024-03-28 发布日期:2024-03-28
  • 通讯作者: 罗马吉 E-mail:zengqiquan@163.com;mjluo@whut.edu.cn
  • 作者简介:曾其权(1982—),男,硕士,高级工程师,研究方向为氢能和储能控制技术,E-mail:zengqiquan@163.com
  • 基金资助:
    国家自然科学基金(52277080);湖北省重点研发计划(2023BAB114)

Life prediction of fuel cells based on the LSTM-UPF hybrid method

Qiquan ZENG1(), Maji LUO2(), Yinlong YANG2, Qingze HUANG2   

  1. 1.China Nuclear Power Technology Research Institute Co. Ltd. , Shenzhen 518000, Guangdong, China
    2.School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, China
  • Received:2023-10-11 Revised:2023-11-19 Online:2024-03-28 Published:2024-03-28
  • Contact: Maji LUO E-mail:zengqiquan@163.com;mjluo@whut.edu.cn

摘要:

燃料电池的寿命预测是燃料电池健康管理的重要组成部分,可为燃料电池的运行和维护提供指导性意见。为提高寿命预测的工况适应性并保证预测精度,本工作结合长短期记忆神经网络(long short-term memory neural network,LSTM)和无迹粒子滤波(unscented particle filter, UPF)两种算法的优势,提出了一种LSTM-UPF混合驱动方法进行稳态和准动态工况下燃料电池的寿命预测。该方法首先优化训练预测模型的实验数据并采用离散小波变换(discrete wavelet transform, DWT)技术将其分解为高频部分和低频部分,使用LSTM算法对这两部分分别进行预测实现对燃料电池长期老化趋势的预测,并使用修正因子对趋势预测结果进行漂移修正,然后利用得到的燃料电池长期老化趋势,根据UPF算法对燃料电池的剩余使用寿命(remaining useful life, RUL)进行估计。采用预测寿命终点、预测寿命误差、置信区间宽度、RUL预测误差等评价指标对不同寿命预测方法进行对比分析,结果表明,LSTM-UPF混合预测方法对燃料电池稳态工况和准动态工况的RUL预测误差分别为4.1%和3.4%,比基于模型的PF和UPF方法具有更精确的RUL预测结果与高质量的预测置信区间,工况适应性良好。本研究有助于提高多工况下的燃料电池寿命预测精度和置信度。

关键词: 质子交换膜燃料电池, 寿命预测, 长短期记忆神经网络, 无迹粒子滤波

Abstract:

Life prediction for fuel cells is crucial to fuel cell health management, offering their operation and maintenance guidance. Advantages of a long short-term memory neural network (LSTM) and an unscented particle filter (UPF) algorithm are combined to enhance condition adaptability in life prediction and ensure accuracy. The proposed LSTM-UPF hybrid method is designed to predict fuel cell life under steady-state and quasidynamic conditions. Initially, experimental data used for model training is optimized and decomposed into high-frequency and low-frequency components using the discrete wavelet transform technique. The LSTM algorithm predicts these components, forecasting the long-term aging trend of fuel cells. Drift correction is then applied to refine the trend prediction results. The fuel cell's remaining useful life (RUL) is estimated using the UPF algorithm based on the long-term aging trend. Evaluation indexes, including prediction life end, life prediction error, confidence interval width, and RUL prediction error, are adopted to assess different life prediction methods. Comparative results demonstrate that the LSTM-UPF hybrid life prediction method yields RUL prediction errors of 4.1% and 3.4% for steady-state and quasidynamic conditions, respectively. Moreover, it exhibits more accurate RUL predictions, high-quality confidence intervals, and strong adaptability in both scenarios. This study enhances the accuracy and confidence level of fuel cell life predictions.

Key words: proton exchange membrane fuel cell, life prediction, long short-term memory neural network, unscented particle filter

中图分类号: