1 |
禹永帅, 刘永峰, 裴普成, 等. 阴极相对湿度对PEMFC电解质水含量及性能的影响[J]. 储能科学与技术, 2023, 12(6): 1755-1764. DOI: 10.19799/j.cnki.2095-4239.2023.0048.
|
|
YU Y S, LIU Y F, PEI P C, et al. Effect of cathode relative humidity on membrane water content and performance of PEMFC[J]. Energy Storage Science and Technology, 2023, 12(6): 1755-1764. DOI: 10.19799/j.cnki.2095-4239.2023.0048.
|
2 |
王新. 氢能燃料电池的成本分析与效益研究[J]. 储能科学与技术, 2023, 12(6): 2040-2041.
|
|
WANG X. Cost analysis and benefit study of hydrogen fuel cell[J]. Energy Storage Science and Technology, 2023, 12(6): 2040-2041.
|
3 |
乔雨田, 刘永峰, 禹永帅, 等. 温湿度变化对车用燃料电池输出性能的影响[J]. 储能科学与技术, 2024, 13(3): 870-878.
|
|
QIAO Y T, LIU Y F, YU Y S, et al. Effect of temperature and humidity variations on the output performance of automotive fuel cells[J]. Energy Storage Science and Technology, 2024, 13(3): 870-878.
|
4 |
WANG D, MIN H T, SUN W Y, et al. Durability study of frequent dry-wet cycle on proton exchange membrane fuel cell[J]. Energies, 2023, 16(11): 4284. DOI: 10.3390/en16114284.
|
5 |
XING Y J, LI H B, AVGOUROPOULOS G. Research progress of proton exchange membrane failure and mitigation strategies[J]. Materials, 2021, 14(10): 2591. DOI: 10.3390/ma14102591.
|
6 |
LIU J, YIN Y, ZHANG J F, et al. Mechanical degradation of catalyst layer under accelerated relative humidity cycling in a polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2021, 512: 230487. DOI: 10.1016/j.jpowsour. 2021.230487.
|
7 |
KHORASANY R M H, SADEGHI ALAVIJEH A, KJEANG E, et al. Mechanical degradation of fuel cell membranes under fatigue fracture tests[J]. Journal of Power Sources, 2015, 274: 1208-1216. DOI: 10.1016/j.jpowsour.2014.10.135.
|
8 |
HAN S, ZHENG W B, LU Y R, et al. Investigation of mechanical degradation in catalyst-coated reinforced membranes under in situ hydrothermal cycles[J]. International Journal of Hydrogen Energy, 2024, 58: 279-288. DOI: 10.1016/j.ijhydene.2024.01.131.
|
9 |
ZHANG Y X, LI X G, KLINKOVA A. Numerical investigation of delamination onset and propagation in catalyst layers of PEM fuel cells under hygrothermal cycles[J]. International Journal of Hydrogen Energy, 2021, 46(19): 11071-11083. DOI: 10.1016/j.ijhydene.2020.09.258.
|
10 |
QIN Y Z, MA S H, CHANG Y F, et al. Modeling the membrane/CL delamination with the existence of CL crack under RH cycling conditions of PEM fuel cell[J]. International Journal of Hydrogen Energy, 2021, 46(12): 8722-8735. DOI: 10.1016/j.ijhydene. 2020.12.043.
|
11 |
CHANG Y F, ZHAO J, SHAHGALDI S, et al. Modelling of mechanical microstructure changes in the catalyst layer of a polymer electrolyte membrane fuel cell[J]. International Journal of Hydrogen Energy, 2020, 45(54): 29904-29916. DOI: 10.1016/j.ijhydene.2018.10.157.
|
12 |
ZHAO J, SHAHGALDI S, LI X G, et al. Experimental observations of microstructure changes in the catalyst layers of proton exchange membrane fuel cells under wet-dry cycles[J]. Journal of the Electrochemical Society, 2018, 165(6): F3337-F3345. DOI: 10.1149/2.0391806jes.
|
13 |
陈曦, 贺凌轩, 刘芹孝, 等. 动态工况下车用燃料电池系统热力学分析[J]. 储能科学与技术, 2021, 10(4): 1416-1422. DOI: 10.19799/j.cnki.2095-4239.2021.0020.
|
|
CHEN X, HE L X, LIU Q X, et al. Thermodynamic analysis of vehicle fuel cell system under dynamic conditions[J]. Energy Storage Science and Technology, 2021, 10(4): 1416-1422. DOI: 10.19799/j.cnki.2095-4239.2021.0020.
|
14 |
CHEN X, LONG S C, HE L X, et al. Performance evaluation on thermodynamics-economy-environment of PEMFC vehicle power system under dynamic condition[J]. Energy Conversion and Management, 2022, 269: 116082. DOI: 10.1016/j.enconman. 2022.116082.
|
15 |
YANG Z R, DU Q, JIA Z W, et al. Effects of operating conditions on water and heat management by a transient multi-dimensional PEMFC system model[J]. Energy, 2019, 183: 462-476. DOI: 10.1016/j.energy.2019.06.148.
|
16 |
YANG Z R, DU Q, JIA Z W, et al. A comprehensive proton exchange membrane fuel cell system model integrating various auxiliary subsystems[J]. Applied Energy, 2019, 256: 113959. DOI: 10.1016/j.apenergy.2019.113959.
|
17 |
LIU Z, ZHANG B T, XU S C. Research on air mass flow-pressure combined control and dynamic performance of fuel cell system for vehicles application[J]. Applied Energy, 2022, 309: 118446. DOI: 10.1016/j.apenergy.2021.118446.
|
18 |
WANG P Y, MA Y Y, LI J H, et al. A novel control algorithm of the air supply subsystem: Based on dynamic modeling of proton exchange membrane fuel cell[J]. Processes, 2022, 10(8): 1499. DOI: 10.3390/pr10081499.
|
19 |
SU Q Q, ZHOU J M, YI F Y, et al. An intelligent control method for PEMFC air supply subsystem to optimize dynamic response performance[J]. Fuel, 2024, 361: 130697. DOI: 10.1016/j.fuel.2023.130697.
|
20 |
LIU Z, CHEN H C, PENG L, et al. Feedforward-decoupled closed-loop fuzzy proportion-integral-derivative control of air supply system of proton exchange membrane fuel cell[J]. Energy, 2022, 240: 122490. DOI: 10.1016/j.energy.2021.122490.
|
21 |
FERRARIS A, MESSANA A, AIRALE A G, et al. Nafion® tubing humidification system for polymer electrolyte membrane fuel cells[J]. Energies, 2019, 12(9): 1773. DOI: 10.3390/en12091773.
|
22 |
SREEDHARAN D, PAUL V, THOTTUNGAL R. Mathematical modelling of polymer electrolyte membrane fuel cell and fuzzy-based intelligent controllers for performance enhancement[J]. Computers & Electrical Engineering, 2019, 77: 354-365. DOI: 10.1016/j.compeleceng.2019.06.017.
|
23 |
VU H N, NGUYEN X L, YU S. A lumped-mass model of membrane humidifier for PEMFC[J]. Energies, 2022, 15(6): 2113. DOI: 10.3390/en15062113.
|
24 |
何锦涛. 质子交换膜燃料电池空气加湿系统研究[D]. 北京: 北京交通大学, 2022.
|
|
HE J T. Research on air humidification system of proton exchange membrane fuel cell[D]. Beijing: Beijing Jiaotong University, 2022.
|
25 |
TAN J Q, HU H Q, LIU S N, et al. Optimization of PEMFC system operating conditions based on neural network and PSO to achieve the best system performance[J]. International Journal of Hydrogen Energy, 2022, 47(84): 35790-35809. DOI: 10.1016/j.ijhydene.2022.08.154.
|
26 |
PUKRUSHPAN J T, PENG HUEI, STEFANOPOULOU A G. Control-oriented modeling and analysis for automotive fuel cell systems[J]. Journal of Dynamic Systems, Measurement, and Control, 2004, 126(1): 14-25. DOI: 10.1115/1.1648308.
|
27 |
WANG B W, DENG H, JIAO K. Purge strategy optimization of proton exchange membrane fuel cell with anode recirculation[J]. Applied Energy, 2018, 225: 1-13. DOI: 10.1016/j.apenergy. 2018.04.058.
|
28 |
HASSAN A H, LIAO Z R, WANG K C, et al. Exergy and exergoeconomic analysis for the proton exchange membrane water electrolysis under various operating conditions and design parameters[J]. Energies, 2022, 15(21): 8247. DOI: 10.3390/en15218247.
|
29 |
VU H N, TRUONG LE TRI D, NGUYEN H L, et al. Multifunctional bypass valve for water management and surge protection in a proton-exchange membrane fuel cell supply-air system[J]. Energy, 2023, 278: 127696. DOI: 10.1016/j.energy.2023.127696.
|
30 |
PARK S K, CHOE S Y, CHOI S H. Dynamic modeling and analysis of a shell-and-tube type gas-to-gas membrane humidifier for PEM fuel cell applications[J]. International Journal of Hydrogen Energy, 2008, 33(9): 2273-2282. DOI: 10.1016/j.ijhydene.2008.02.058.
|