储能科学与技术 ›› 2024, Vol. 13 ›› Issue (9): 3150-3160.doi: 10.19799/j.cnki.2095-4239.2024.0586
收稿日期:
2024-06-28
修回日期:
2024-07-15
出版日期:
2024-09-28
发布日期:
2024-09-20
通讯作者:
许审镇
E-mail:gbzhou@jxnu.edu.cn;xushenzhen@pku.edu.cn
作者简介:
周国兵(1989—),男,博士,副研究员,主要研究方向为材料模拟与理论催化,E-mail:gbzhou@jxnu.edu.cn。
基金资助:
Guobing ZHOU1,2(), Shenzhen XU1()
Received:
2024-06-28
Revised:
2024-07-15
Online:
2024-09-28
Published:
2024-09-20
Contact:
Shenzhen XU
E-mail:gbzhou@jxnu.edu.cn;xushenzhen@pku.edu.cn
摘要:
锂金属负极因其极高的理论比容量在锂离子电池领域引起了极大的关注,但其高反应活性会引发电解液组分发生一系列复杂的降解反应,并在电极表面生成固态电解质界面膜(SEI)。SEI钝化层一方面能抑制电解液持续损耗,另一方面也会显著影响电池的循环性能。因此,从原子/分子层面阐明SEI形成和生长机理成为了近些年的研究重点和热点。本文综述了不同理论模拟方法在SEI结构、组分和生长过程的最新研究进展,介绍了经典分子动力学、反应力场分子动力学、第一性原理分子动力学、机器学习力场分子动力学以及动力学蒙特卡罗等模拟方法在SEI研究中的成功案例。讨论了现有理论计算方法在模拟SEI形成和生长机理方面的局限性,提出可结合机器学习和动力学蒙特卡罗方法来实现长时域SEI形成和生长过程模拟的技术方案展望。
中图分类号:
周国兵, 许审镇. 锂金属负极固态电解质界面膜形成和生长机理的理论研究进展[J]. 储能科学与技术, 2024, 13(9): 3150-3160.
Guobing ZHOU, Shenzhen XU. Progress of theoretical studies on the formation and growth mechanisms of solid electrolyte interphase at lithium metal anodes[J]. Energy Storage Science and Technology, 2024, 13(9): 3150-3160.
表1
用于SEI研究的不同理论模拟方法对比"
Simulation methods | Time/Spatial scale | Features |
---|---|---|
CMD | ns/nm | Advantages: high computational efficiency Disadvantages: accuracy limit, not suitable for chemical reactions |
RxMD | ns/nm | Advantages: capable of modeling chemical reactions Disadvantages: accuracy limit, complex potential development |
AIMD | ps/nm | Advantages: high accuracy, capable of modeling chemical reactions Disadvantages: high computational cost, limited system size |
MLMD | ns/nm | Advantages: high computational efficiency, high accuracy, capable of modeling chemical reactions Disadvantages: transferability limitations |
KMC | s/nm~μm | Advantages: long timescales, efficient sampling Disadvantages: event list requirement |
1 | MASIAS A, MARCICKI J, PAXTON W A. Opportunities and challenges of lithium ion batteries in automotive applications[J]. ACS Energy Letters, 2021, 6(2): 621-630. DOI: 10.1021/acsenergylett.0c02584. |
2 | KIM S, PARK G, LEE S J, et al. Lithium-metal batteries: From fundamental research to industrialization[J]. Advanced Materials, 2023, 35(43): e2206625. DOI: 10.1002/adma.202206625. |
3 | KWAK W J, ROSY, SHARON D, et al. Lithium-oxygen batteries and related systems: Potential, status, and future[J]. Chemical Reviews, 2020, 120(14): 6626-6683. DOI: 10.1021/acs.chemrev.9b00609. |
4 | ZHANG X, YANG Y A, ZHOU Z. Towards practical lithium-metal anodes[J]. Chemical Society Reviews, 2020, 49(10): 3040-3071. DOI: 10.1039/c9cs00838a. |
5 | LIU D H, BAI Z Y, LI M, et al. Developing high safety Li-metal anodes for future high-energy Li-metal batteries: Strategies and perspectives[J]. Chemical Society Reviews, 2020, 49(15): 5407-5445. DOI: 10.1039/c9cs00636b. |
6 | MENG X Q, XU Y L, CAO H B, et al. Internal failure of anode materials for lithium batteries—A critical review[J]. Green Energy & Environment, 2020, 5(1): 22-36. DOI: 10.1016/j.gee. 2019.10.003. |
7 | YU X W, MANTHIRAM A. Electrode-electrolyte interfaces in lithium-based batteries[J]. Energy & Environmental Science, 2018, 11(3): 527-543. DOI: 10.1039/C7EE02555F. |
8 | ADENUSI H, CHASS G A, PASSERINI S, et al. Lithium batteries and the solid electrolyte interphase (SEI)—Progress and outlook[J]. Advanced Energy Materials, 2023, 13(10): 2203307. DOI: 10.1002/aenm.202203307. |
9 | GAUTHIER M, CARNEY T J, GRIMAUD A, et al. Electrode-electrolyte interface in Li-ion batteries: Current understanding and new insights[J]. The Journal of Physical Chemistry Letters, 2015, 6(22): 4653-4672. DOI: 10.1021/acs.jpclett.5b01727. |
10 | MENKIN S, GOLODNITSKY D, PELED E. Artificial solid-electrolyte interphase (SEI) for improved cycleability and safety of lithium-ion cells for EV applications[J]. Electrochemistry Communications, 2009, 11(9): 1789-1791. DOI: 10.1016/j.elecom.2009.07.019. |
11 | SHIM J, KOSTECKI R, RICHARDSON T, et al. Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature[J]. Journal of Power Sources, 2002, 112(1): 222-230. DOI: 10.1016/S0378-7753(02)00363-4. |
12 | SMITH A J, BURNS J C, TRUSSLER S, et al. Precision measurements of the coulombic efficiency of lithium-ion batteries and of electrode materials for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2010, 157(2): A196. DOI: 10.1149/1.3268129. |
13 | SHAN X Y, ZHONG Y, ZHANG L J, et al. A brief review on solid electrolyte interphase composition characterization technology for lithium metal batteries: Challenges and perspectives[J]. The Journal of Physical Chemistry C, 2021, 125(35): 19060-19080. DOI: 10.1021/acs.jpcc.1c06277. |
14 | WU J X, IHSAN-UL-HAQ M, CHEN Y M, et al. Understanding solid electrolyte interphases: Advanced characterization techniques and theoretical simulations[J]. Nano Energy, 2021, 89: 106489. DOI: 10.1016/j.nanoen.2021.106489. |
15 | VERMA P, MAIRE P, NOVÁK P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta, 2010, 55(22): 6332-6341. DOI: 10.1016/j.electacta.2010.05.072. |
16 | WU H P, JIA H, WANG C M, et al. Recent progress in understanding solid electrolyte interphase on lithium metal anodes[J]. Advanced Energy Materials, 2021, 11(5): 2003092. DOI: 10.1002/aenm.202003092. |
17 | 张慧敏, 王京, 王一博, 等. 锂离子电池SEI多尺度建模研究展望[J]. 储能科学与技术, 2023, 12(2): 366-382. DOI: 10.19799/j.cnki.2095-4239.2022.0504. |
ZHANG H M, WANG J, WANG Y B, et al. Multiscale modeling of the SEI of lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(2): 366-382. DOI: 10.19799/j.cnki.2095-4239.2022.0504. | |
18 | 于沛平, 许亮, 麻冰云, 等. 多尺度模拟研究固体电解质界面[J]. 储能科学与技术, 2022, 11(3): 921-928. DOI: 10.19799/j.cnki.2095-4239.2022.0046. |
YU P P, XU L, MA B Y, et al. Multiscale simulation of a solid electrolyte interphase[J]. Energy Storage Science and Technology, 2022, 11(3): 921-928. DOI: 10.19799/j.cnki.2095-4239.2022.0046. | |
19 | TAKENAKA N, BOUIBES A, YAMADA Y, et al. Frontiers in theoretical analysis of solid electrolyte interphase formation mechanism[J]. Advanced Materials, 2021, 33(37): e2100574. DOI: 10.1002/adma.202100574. |
20 | WU Q S, MCDOWELL M T, QI Y. Effect of the electric double layer (EDL) in multicomponent electrolyte reduction and solid electrolyte interphase (SEI) formation in lithium batteries[J]. Journal of the American Chemical Society, 2023, 145(4): 2473-2484. DOI: 10.1021/jacs.2c11807. |
21 | JORN R, KUMAR R, ABRAHAM D P, et al. Atomistic modeling of the electrode-electrolyte interface in Li-ion energy storage systems: Electrolyte structuring[J]. The Journal of Physical Chemistry C, 2013, 117(8): 3747-3761. DOI: 10.1021/jp3102282. |
22 | KANG P B, CHEN D L, WU L Y, et al. Insight into poly(1,3-dioxolane)-based polymer electrolytes and their interfaces with lithium metal: Effect of electrolyte compositions[J]. Chemical Engineering Journal, 2023, 455: 140931. DOI: 10.1016/j.cej.2022.140931. |
23 | LOURENÇO T C, EBADI M, BRANDELL D, et al. Interfacial structures in ionic liquid-based ternary electrolytes for lithium-metal batteries: A molecular dynamics study[J]. The Journal of Physical Chemistry B, 2020, 124(43): 9648-9657. DOI: 10.1021/acs.jpcb.0c06500. |
24 | VAN DUIN A C T, DASGUPTA S, LORANT F, et al. ReaxFF: A reactive force field for hydrocarbons[J]. The Journal of Physical Chemistry A, 2001, 105(41): 9396-9409. DOI: 10.1021/jp004368u. |
25 | LEE H G, KIM S Y, LEE J S. Dynamic observation of dendrite growth on lithium metal anode during battery charging/discharging cycles[J]. NPJ Computational Materials, 2022, 8: 103. DOI: 10.1038/s41524-022-00788-6. |
26 | YANG P Y, PAO C W. Molecular simulations of the microstructure evolution of solid electrolyte interphase during cyclic charging/discharging[J]. ACS Applied Materials & Interfaces, 2021, 13(4): 5017-5027. DOI: 10.1021/acsami.0c18783. |
27 | XIE M, WU Y, LIU Y, et al. Pathway of in situ polymerization of 1,3-dioxolane in LiPF6 electrolyte on Li metal anode[J]. Materials Today Energy, 2021, 21: 100730. DOI: 10.1016/j.mtener. 2021.100730. |
28 | LIU Y, SUN Q T, YU P P, et al. Effects of high and low salt concentrations in electrolytes at lithium-metal anode surfaces using DFT-ReaxFF hybrid molecular dynamics method[J]. The Journal of Physical Chemistry Letters, 2021, 12(11): 2922-2929. DOI: 10.1021/acs.jpclett.1c00279. |
29 | YU P P, SUN Q T, LIU Y, et al. Multiscale simulation of solid electrolyte interface formation in fluorinated diluted electrolytes with lithium anodes[J]. ACS Applied Materials & Interfaces, 2022, 14(6): 7972-7979. DOI: 10.1021/acsami.1c22610. |
30 | YANG M Y, ZYBIN S V, DAS T, et al. Characterization of the solid electrolyte interphase at the Li metal-ionic liquid interface[J]. Advanced Energy Materials, 2023, 13(3): 2202949. DOI: 10.1002/aenm.202202949. |
31 | MERINOV B V, ZYBIN S V, NASERIFAR S, et al. Interface structure in Li-metal/[Pyr14][TFSI]-ionic liquid system from ab initio molecular dynamics simulations[J]. The Journal of Physical Chemistry Letters, 2019, 10(16): 4577-4586. DOI: 10.1021/acs.jpclett.9b01515. |
32 | DHATTARWAL H S, CHEN Y W, KUO J L, et al. Mechanistic insight on the formation of a solid electrolyte interphase (SEI) by an acetonitrile-based superconcentrated [Li][TFSI] electrolyte near lithium metal[J]. The Journal of Physical Chemistry C, 2020, 124(50): 27495-27502. DOI: 10.1021/acs.jpcc.0c08009. |
33 | GALVEZ-ARANDA D E, SEMINARIO J M. Li-metal anode in dilute electrolyte LiFSI/TMP: Electrochemical stability using ab initio molecular dynamics[J]. The Journal of Physical Chemistry C, 2020, 124(40): 21919-21934. DOI: 10.1021/acs.jpcc.0c04240. |
34 | ZHENG Y, SOTO F A, PONCE V, et al. Localized high concentration electrolyte behavior near a lithium-metal anode surface[J]. Journal of Materials Chemistry A, 2019, 7(43): 25047-25055. DOI: 10.1039/C9TA08935G. |
35 | HU T P, TIAN J X, DAI F Z, et al. Impact of the local environment on Li ion transport in inorganic components of solid electrolyte interphases[J]. Journal of the American Chemical Society, 2023, 145(2): 1327-1333. DOI: 10.1021/jacs.2c11521. |
36 | FU F J, WANG X X, ZHANG L F, et al. Unraveling the atomic-scale mechanism of phase transformations and structural evolutions during (de)lithiation in Si anodes[J]. Advanced Functional Materials, 2023, 33(37): 2303936. DOI: 10.1002/adfm.202303936. |
37 | REN F C, WU Y Q, ZUO W H, et al. Visualizing the SEI formation between lithium metal and solid-state electrolyte[J]. Energy & Environmental Science, 2024, 17(8): 2743-2752. DOI: 10.1039/D3EE03536K. |
38 | FANG F, LIN J, LI J J, et al. Molecular dynamics simulations of liquid gallium alloy Ga-X (X = Pt, Pd, Rh) via machine learning potentials[J]. Inorganic Chemistry Frontiers, 2024, 11(5): 1573-1582. DOI: 10.1039/D3QI02410E. |
39 | XU L K, SHAO W, JIN H S, et al. Data efficient and stability indicated sampling for developing reactive machine learning potential to achieve ultralong simulation in lithium-metal batteries[J]. The Journal of Physical Chemistry C, 2023, 127(50): 24106-24117. DOI: 10.1021/acs.jpcc.3c05522. |
40 | ESMAEILPOUR M, JANA S, LI H J, et al. A solution-mediated pathway for the growth of the solid electrolyte interphase in lithium-ion batteries[J]. Advanced Energy Materials, 2023, 13(14): 2203966. DOI: 10.1002/aenm.202203966. |
41 | SITAPURE N, LEE H, OSPINA-ACEVEDO F, et al. A computational approach to characterize formation of a passivation layer in lithium metal anodes[J]. AIChE Journal, 2021, 67(1): e17073. DOI: 10.1002/aic.17073. |
42 | GERASIMOV M, SOTO F A, WAGNER J, et al. Species distribution during solid electrolyte interphase formation on lithium using MD/DFT-parameterized kinetic Monte Carlo simulations[J]. The Journal of Physical Chemistry C, 2023, 127(10): 4872-4886. DOI: 10.1021/acs.jpcc.2c05898. |
43 | WAGNER-HENKE J, KUAI D C, GERASIMOV M, et al. Knowledge-driven design of solid-electrolyte interphases on lithium metal via multiscale modelling[J]. Nature Communications, 2023, 14(1): 6823. DOI: 10.1038/s41467-023-42212-7. |
[1] | 樊金保, 李娜, 吴宜琨, 贺春旺, 杨乐, 宋维力, 陈浩森. 能源电池单体层级数字孪生技术[J]. 储能科学与技术, 2024, 13(9): 3112-3133. |
[2] | 李亚捷, 王依平, 陈斌, 林海龙, 张更, 施思齐. 机器学习辅助相场模拟预测锂离子输运参数对电池枝晶最大生长高度和空间利用率的影响[J]. 储能科学与技术, 2024, 13(9): 2864-2870. |
[3] | 邢瑞鹤, 翁素婷, 李叶晶, 张佳怡, 张浩, 王雪锋. AI辅助电池材料表征与数据分析[J]. 储能科学与技术, 2024, 13(9): 2839-2863. |
[4] | 刘定宏, 董文楷, 李召阳, 张红烛, 齐昕. 基于RUN-GRU-attention模型的实车动力电池健康状态估计方法[J]. 储能科学与技术, 2024, 13(9): 3042-3058. |
[5] | 李从心, 岳美玲, 李昕彤, 熊庆辉, 刘孝艳. 基于条件神经网络的质子交换膜燃料电池的老化性能预测[J]. 储能科学与技术, 2024, 13(9): 3094-3102. |
[6] | 刘子玉, 姜泽坤, 邱伟, 徐泉, 牛迎春, 徐春明, 周天航. 人工智能在长时液流电池储能中的应用:性能优化和大模型[J]. 储能科学与技术, 2024, 13(9): 2871-2883. |
[7] | 谢莹莹, 邓斌, 张与之, 王晓旭, 张林峰. AI for Science时代下的电池平台化智能研发[J]. 储能科学与技术, 2024, 13(9): 3182-3197. |
[8] | 朱振威, 苗嘉伟, 祝夏雨, 王晓旭, 邱景义, 张浩. 基于机器学习方法的锂电池剩余寿命预测研究进展[J]. 储能科学与技术, 2024, 13(9): 3134-3149. |
[9] | 何智峰, 陶远哲, 胡泳钢, 王其聪, 杨勇. 机器学习强化的电化学阻抗谱技术及其在锂离子电池研究中的应用[J]. 储能科学与技术, 2024, 13(9): 2933-2951. |
[10] | 赵晨阳, 于晓琨, 陶于兵. 改性氧化铜/正十八烷复合相变材料制备及性能表征研究[J]. 储能科学与技术, 2024, 13(6): 1786-1793. |
[11] | 李炳金, 韩晓霞, 张文杰, 曾伟国, 武晋德. 锂离子电池剩余使用寿命预测方法综述[J]. 储能科学与技术, 2024, 13(4): 1266-1276. |
[12] | 武美玲, 牛磊, 李世友, 赵冬妮. 正极预锂化添加剂用于锂离子电池的研究进展[J]. 储能科学与技术, 2024, 13(3): 759-769. |
[13] | 田禾青, 寇朝阳, 周俊杰, 余银生. LiCl-KCl熔盐纳米流体结构和热物性的分子动力学模拟[J]. 储能科学与技术, 2023, 12(3): 654-660. |
[14] | 张慧敏, 王京, 王一博, 郑家新, 邱景义, 曹高萍, 张浩. 锂离子电池SEI多尺度建模研究展望[J]. 储能科学与技术, 2023, 12(2): 366-382. |
[15] | 付殿威, 张灿灿, 娜荷芽, 王国强, 吴玉庭, 鹿院卫. 基于分子动力学的熔盐热物性研究进展[J]. 储能科学与技术, 2023, 12(12): 3873-3882. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||