储能科学与技术 ›› 2024, Vol. 13 ›› Issue (9): 3150-3160.doi: 10.19799/j.cnki.2095-4239.2024.0586

• AI辅助先进电池设计与应用专刊 • 上一篇    下一篇

锂金属负极固态电解质界面膜形成和生长机理的理论研究进展

周国兵1,2(), 许审镇1()   

  1. 1.北京大学材料科学与工程学院,北京 100871
    2.江西师范大学化学工程学院,江西 南昌 330022
  • 收稿日期:2024-06-28 修回日期:2024-07-15 出版日期:2024-09-28 发布日期:2024-09-20
  • 通讯作者: 许审镇 E-mail:gbzhou@jxnu.edu.cn;xushenzhen@pku.edu.cn
  • 作者简介:周国兵(1989—),男,博士,副研究员,主要研究方向为材料模拟与理论催化,E-mail:gbzhou@jxnu.edu.cn
  • 基金资助:
    国家自然科学基金项目(52273223)

Progress of theoretical studies on the formation and growth mechanisms of solid electrolyte interphase at lithium metal anodes

Guobing ZHOU1,2(), Shenzhen XU1()   

  1. 1.School of Materials Science and Engineering, Peking University, Beijing 100871, China
    2.School of Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
  • Received:2024-06-28 Revised:2024-07-15 Online:2024-09-28 Published:2024-09-20
  • Contact: Shenzhen XU E-mail:gbzhou@jxnu.edu.cn;xushenzhen@pku.edu.cn

摘要:

锂金属负极因其极高的理论比容量在锂离子电池领域引起了极大的关注,但其高反应活性会引发电解液组分发生一系列复杂的降解反应,并在电极表面生成固态电解质界面膜(SEI)。SEI钝化层一方面能抑制电解液持续损耗,另一方面也会显著影响电池的循环性能。因此,从原子/分子层面阐明SEI形成和生长机理成为了近些年的研究重点和热点。本文综述了不同理论模拟方法在SEI结构、组分和生长过程的最新研究进展,介绍了经典分子动力学、反应力场分子动力学、第一性原理分子动力学、机器学习力场分子动力学以及动力学蒙特卡罗等模拟方法在SEI研究中的成功案例。讨论了现有理论计算方法在模拟SEI形成和生长机理方面的局限性,提出可结合机器学习和动力学蒙特卡罗方法来实现长时域SEI形成和生长过程模拟的技术方案展望。

关键词: 固态电解质界面膜, 形成和生长机理, 分子动力学, 动力学蒙特卡罗, 机器学习

Abstract:

Lithium metal anodes in lithium-ion batteries (LIBs) have garnered significant research interest due to their exceptionally high theoretical specific capacity. However, their high reactivity can trigger a series of complex degradation reactions of electrolyte components, ultimately forming a solid electrolyte interface (SEI) on the electrode surfaces. This SEI passivation layer suppresses the continuous loss of electrolytes but can significantly affect the cycling performance of the LIBs. Consequently, understanding the formation and growth mechanisms of SEI at the atomic/molecular level has become a major research focus in recent years. This study summarizes the latest research progress on the structure, composition, and growth process of SEI using various theoretical approaches. Particularly, it introduces some successful examples of classical molecular dynamics, reactive force field molecular dynamics, first-principles molecular dynamics, machine learning force field molecular dynamics, and kinetic Monte Carlo methods in SEI modeling. In addition, this study discusses the limitations of current theoretical approaches in simulating the formation and growth mechanisms of SEI. Finally, this study proposes that combining machine learning methods and kinetic Monte Carlo approaches to enhance the simulations of the formation and growth processes of SEI over long-time domains.

Key words: solid electrolyte interphase, growth and formation mechanism, molecular dynamics, kinetics Monte Carlo, machine learning

中图分类号: