储能科学与技术 ›› 2025, Vol. 14 ›› Issue (3): 898-912.doi: 10.19799/j.cnki.2095-4239.2025.0030
何特特1(), 卢洋1(
), 刘洋2, 徐斌2, 陈永乐2, 刘芳洋1(
)
收稿日期:
2025-01-07
修回日期:
2025-02-05
出版日期:
2025-03-28
发布日期:
2025-04-28
通讯作者:
卢洋,刘芳洋
E-mail:1160794790@qq.com;lu_yang@csu.edu.cn;liufangyang@csu.edu.cn
作者简介:
何特特(1994—),男,博士研究生,研究方向为固态电池关键材料研发及产业化,E-mail:1160794790@qq.com;
基金资助:
Tete HE1(), Yang LU1(
), Yang LIU2, Bin XU2, Yongle CHEN2, Fangyang LIU1(
)
Received:
2025-01-07
Revised:
2025-02-05
Online:
2025-03-28
Published:
2025-04-28
Contact:
Yang LU, Fangyang LIU
E-mail:1160794790@qq.com;lu_yang@csu.edu.cn;liufangyang@csu.edu.cn
摘要:
硫化锂(Li2S)作为合成高性能硫化物固态电解质的关键前体原料,是硫化物全固态电池实现产业化应用的“基石”材料。系统认知硫化锂材料的关键物性参数,开发高质量、低成本的规模化制备技术,对推动硫化物全固态电池产业发展具有重要战略意义。本文从论述硫化锂在全固态电池技术体系中的核心地位出发,重点解析硫化锂的基础理化参数、关键性能指标及其对产业化应用的关键影响。基于产业化可行性视角,系统归纳了五类具有产业化前景的制备工艺:锂硫化合法、碳热还原法、水合肼还原法、液相复分解法及硫化氢中和法。通过构建多维评价体系,从工艺特性、产品性能、安全风险及经济性等维度对各制备技术进行了对比分析,进而阐明制约当前硫化锂产业化进程的关键瓶颈,提出了针对性优化策略,并展望未来规模化制备技术的发展方向。为硫化锂的工业化生产及其在硫化物全固态电池中的高效应用提供参考,助力硫化物固态电解质体系的技术升级与成本优化。
中图分类号:
何特特, 卢洋, 刘洋, 徐斌, 陈永乐, 刘芳洋. 硫化锂:全固态电池时代的“基石”材料[J]. 储能科学与技术, 2025, 14(3): 898-912.
Tete HE, Yang LU, Yang LIU, Bin XU, Yongle CHEN, Fangyang LIU. Lithium sulfide: the "cornerstone" material in the era of all-solid-state batteries[J]. Energy Storage Science and Technology, 2025, 14(3): 898-912.
表1
代表性硫化物固态电解质的性能和测试条件[8-17]"
材料化学式 | 制备工艺 | 电导率测试关键参数 | 室温电导率/(mS/cm) |
---|---|---|---|
Li9.54Si1.74P1.44S11.7Cl0.3 | 固相球磨-压片-密封烧结 | 制片压强:未提及 阻塞电池:金阻塞电池 频率:0.1 Hz~3 MHz | 25 |
Li5.5PS4.5Cl1.5 | 固相球磨-压片-密封烧结 | 制片压强:370 MPa 阻塞电池:不锈钢阻塞电池 频率:1 Hz~7 MHz | 9.5 |
Li7P3S11 | 固相球磨-烧结 | 制片压强:未提及 阻塞电池:气相沉积Au阻塞电池 频率:0.1 Hz~7 MHz | 2 |
Li3PS4 | 液相反应-密封烧结 | 制片压强:未提及 阻塞电池:涂炭铝箔阻塞电池 频率:1 Hz~1 MHz | 0.16 |
Li7P3S7.5O3.5 | 固相球磨-烧结 | 制片压强:380 MPa 阻塞电池:不锈钢阻塞电池 频率:1 Hz~35 MHz | 0.46 |
Li6.8Si0.8As0.2S5I | 固相球磨-压片-密封烧结 | 制片压强:870 MPa 阻塞电池:Swagelok模型电池 频率:1 Hz~8 MHz | 10.4 |
Li10GeP2S12 | 固相球磨-压片-密封烧结 | 制片压强:未提及 阻塞电池:涂覆金浆,500 ℃烧结 频率范围:0.1 Hz~1 MHz | 12 |
Li9.54[Si0.6Ge0.4]1.74P1.44 S11.1Br0.3O0.6 | 固相球磨-压片-密封烧结 | 制片压强:370MPa 阻塞电池:涂覆金浆,500 ℃烧结 频率范围:0.1 Hz~1 MHz | 32 |
表2
硫化锂质量评价指标汇总"
指标 | 测试方法 | 测量目标 | 意义 |
---|---|---|---|
粉体颜色(白度) | 目视(白度仪) | 碳、多硫等显色杂质 | 杂质对电解质制备及性能产生显著影响 |
物相 | XRD | 无机盐杂质 | 氢氧化锂、氧化锂之类的杂质相在电解质制备中造成杂质相生成,降低电导率 |
水含量 | 卡尔-费休水分测试仪 | 硫化锂含水量 | 水分对硫化锂的储存、使用影响较大 |
碳含量 | 红外碳硫分析仪 测试电子电导 | 硫化锂含碳量 | 碳含量会造成电解质的电子电导率升高,并可能诱导电解质分解 |
溶剂含量 | GC-MS/TGA-DSC | 硫化锂的有机溶剂残留 | 溶剂影响计量比,在后续电解质烧结时碳化会提高电子电导率 |
水溶颜色 | 溶于水后的水溶液颜色 | 金属离子、多硫等杂质 | 金属离子或多硫杂质超标会对电解质化学计量比以及晶体结构产生不利影响 |
1 | TAN D H S, MENG Y S, JANG J. Scaling up high-energy-density sulfidic solid-state batteries: A lab-to-pilot perspective[J]. Joule, 2022, 6(8): 1755-1769. DOI:10.1016/j.joule.2022.07.002. |
2 | ZHANG Q, CAO D X, MA Y, et al. Sulfide-based solid-state electrolytes: Synthesis, stability, and potential for all-solid-state batteries[J]. Advanced Materials, 2019, 31(44): e1901131. DOI:10.1002/adma.201901131. |
3 | REN D S, LU L G, HUA R, et al. Challenges and opportunities of practical sulfide-based all-solid-state batteries[J]. eTransportation, 2023, 18: 100272. DOI:10.1016/j.etran.2023.100272. |
4 | 吴敬华, 杨菁, 刘高瞻, 等. 固态锂电池十年(2011—2021)回顾与展望[J]. 储能科学与技术, 2022, 11(9): 2713-2745. DOI: 10.19799/j.cnki.2095-4239.2022.0309. |
WU J H, YANG J, LIU G Z, et al. Review and prospective of solid-state lithium batteries in the past decade(2011—2021)[J]. Energy Storage Science and Technology, 2022, 11(9): 2713-2745. DOI: 10.19799/j.cnki.2095-4239.2022.0309. | |
5 | 殷高峰. 发展前景被坚定看好 各方持续投研"下一代电池"技术 [Z]. 证券日报. 2024. |
YIN G F. The development prospect is firmly optimistic. All parties continue to invest in the "next generation battery" technology [Z]. Securities Daily. 2024. | |
6 | 曾朵红, 阮巧燕. 硫化物未来潜力最大,开启电池发展新纪元[R]. 苏州: 东吴证券, 2024. |
ZENG D H, RUAN Q Y. Sulfide has the greatest potential in the future, opening a new era of battery development[R]. Suzhou: Soochow Securities, 2024. | |
7 | KUDU Ö U, FAMPRIKIS T, FLEUTOT B, et al. A review of structural properties and synthesis methods of solid electrolyte materials in the Li2S-P2S5 binary system[J]. Journal of Power Sources, 2018, 407: 31-43. DOI:10.1016/j.jpowsour.2018.10.037. |
8 | ADELI P, BAZAK J D, PARK K H, et al. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution[J]. Angewandte Chemie (International Ed), 2019, 58(26): 8681-8686. DOI:10.1002/anie.201814222. |
9 | KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686. DOI:10. 1038/nmat3066. |
10 | KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1(4): 16030. DOI:10.1038/nenergy.2016.30. |
11 | LU P S, XIA Y, SUN G C, et al. Realizing long-cycling all-solid-state Li-In||TiS2 batteries using Li6+ xMxAs1- xS5I (M=Si, Sn) sulfide solid electrolytes[J]. Nature Communications, 2023, 14: 4077. DOI:10.1038/s41467-023-39686-w. |
12 | LI Y X, SONG S B, KIM H, et al. A lithium superionic conductor for millimeter-thick battery electrode[J]. Science, 2023, 381(6653): 50-53. DOI:10.1126/science.add7138. |
13 | HAYASHI A, HAMA S, MORIMOTO H, et al. Preparation of Li2S-P2S5 amorphous solid electrolytes by mechanical milling[J]. Journal of the American Ceramic Society, 2001, 84(2): 477-479. DOI:10.1111/j.1151-2916.2001.tb00685.x. |
14 | TATSUMISAGO M, HAMA S, HAYASHI A, et al. New lithium ion conducting glass-ceramics prepared from mechanochemical Li2S-P2S5 glasses[J]. Solid State Ionics, 2002, 154: 635-640. DOI:10.1016/S0167-2738(02)00509-X. |
15 | WANG H, HOOD Z D, XIA Y N, et al. Fabrication of ultrathin solid electrolyte membranes of β-Li3PS4 nanoflakes by evaporation-induced self-assembly for all-solid-state batteries[J]. Journal of Materials Chemistry A, 2016, 4(21): 8091-8096. DOI:10.1039/C6TA02294D. |
16 | LIU Z C, FU W J, PAYZANT E A, et al. Anomalous high ionic conductivity of nanoporous β-Li3PS4[J]. Journal of the American Chemical Society, 2013, 135(3): 975-978. DOI:10.1021/ja311 0895. |
17 | LI H, LIN Q S, WANG J Z, et al. A cost-effective sulfide solid electrolyte Li7P3S7.5O3.5 with low density and excellent anode compatibility[J]. Angewandte Chemie (International Ed), 2024, 63(37): e202407892. DOI:10.1002/anie.202407892. |
18 | SHI H Y, YANG J, XIA L X, et al. Synthesis of lithium sulfide by cold plasma method and its energy storage properties[J]. JOM, 2024, 76(10): 5803-5815. DOI:10.1007/s11837-024-06763-4. |
19 | LI X, GAO M X, DU W B, et al. A mechanochemical synthesis of submicron-sized Li2S and a mesoporous Li2S/C hybrid for high performance lithium/sulfur battery cathodes[J]. Journal of Materials Chemistry A, 2017, 5(14): 6471-6482. DOI:10.1039/C7TA00557A. |
20 | KARASEVA E V, SHEINA L V, KOLOSNITSYN V S. Synthesis of lithium sulfide by carbothermal reduction of lithium sulfate with petroleum coke[J]. Russian Journal of Applied Chemistry, 2021, 94(1): 1-8. DOI:10.1134/S1070427221010018. |
21 | TU F Y, ZHAO Z X, ZHANG X, et al. Low-cost and scalable synthesis of high-purity Li2S for sulfide solid electrolyte[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(47): 15365-15371. DOI:10.1021/acssuschemeng.2c02238. |
22 | WU F X, LEE J T, FAN F F, et al. A hierarchical particle-shell architecture for long-term cycle stability of Li2S cathodes[J]. Advanced Materials, 2015, 27(37): 5579-5586. DOI:10.1002/adma.201502289. |
23 | 陈格, 田欢, 徐川, 等. 硫酸锂碳化—还原制备硫化锂[J]. 矿冶, 2021, 30(6): 74-78. |
CHEN G, TIAN H, XU C, et al. Preparation of lithium sulfide by high temperature pyrolysis of lithium sulfate[J]. Mining and Metallurgy, 2021, 30(6): 74-78. | |
24 | FANG L R, ZHANG Q R, HAN A G, et al. Green synthesis of the battery material lithium sulfide via metathetic reactions[J]. Chemical Communications, 2022, 58(36): 5498-5501. DOI:10. 1039/D2CC01077A. |
25 | SUN Y J, ZHANG Q R, YANG S J, et al. Making the unfeasible feasible: Synthesis of the battery material lithium sulfide via the metathetic reaction between lithium sulfate and sodium sulfide[J]. Inorganic Chemistry, 2024, 63(1): 485-493. DOI:10.1021/acs.inorgchem.3c03345. |
26 | 徐川, 陈格, 田欢, 等. Ev级高纯硫化锂及其制备方法: 中国, CN117069067A [P]. 2023. |
XU C, CHEN G, TIAN H, et al. Ev grade high purity lithium sulfide and its preparation method: China, CN117069067A [P]. 2023. | |
27 | 周复, 杨柳, 陈格, 等. 硫化锂的制备方法: 中国, CN112678781A [P]. 2019. |
ZHOU F, YANG L, CHEN G, et al. Preparation method of lithium sulfide: China, CN112678781A [P]. 2019. | |
28 | LIANG S, XIA Y, LIANG C, et al. A green and facile strategy for the low-temperature and rapid synthesis of Li2S@PC-CNT cathodes with high Li2S content for advanced Li-S batteries[J]. Journal of Materials Chemistry A, 2018, 6(21): 9906-9914. DOI:10.1039/C8TA01342J. |
29 | NAN C Y, LIN Z, LIAO H G, et al. Durable carbon-coated Li2(S) core-shell spheres for high performance lithium/sulfur cells[J]. Journal of the American Chemical Society, 2014, 136(12): 4659-4663. DOI:10.1021/ja412943h. |
30 | HAN F D, WESTOVER A S, YUE J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes[J]. Nature Energy, 2019, 4: 187-196. DOI:10.1038/s41560-018-0312-z. |
31 | SHAO B W, HUANG Y L, HAN F D. Electronic conductivity of lithium solid electrolytes[J]. Advanced Energy Materials, 2023, 13(16): 2204098. DOI:10.1002/aenm.202204098. |
32 | ZHAO C Z, CHENG X B, ZHANG R, et al. Li2S5-based ternary-salt electrolyte for robust lithium metal anode[J]. Energy Storage Materials, 2016, 3: 77-84. DOI:10.1016/j.ensm.2016.01.007. |
33 | YANG S J, HU X H, XU S J, et al. Synthesis of deliquescent lithium sulfide in air[J]. ACS Applied Materials & Interfaces, 2023, 15(34): 40633-40647. DOI:10.1021/acsami.3c08506. |
34 | ZHAO Y Z, YANG Y A, WOLDEN C A. Scalable synthesis of size-controlled Li2S nanocrystals for next-generation battery technologies[J]. ACS Applied Energy Materials, 2019, 2(3): 2246-2254. DOI:10.1021/acsaem.9b00032. |
35 | FANTAUZZI M, ELSENER B, ATZEI D, et al. Exploiting XPS for the identification of sulfides and polysulfides[J]. RSC Advances, 2015, 5(93): 75953-75963. DOI:10.1039/C5RA14915K. |
36 | PILYUGINA Y A, MISHINKIN V Y, KUZMINA E V, et al. The sulfide solid electrolyte synthesized via carbothermal reduction of lithium sulfate for solid-state lithium-sulfur batteries[J]. Inorganic Chemistry Communications, 2025, 174: 113926. DOI:10.1016/j.inoche.2025.113926. |
37 | YANG H Y, SUN Y J, YANG S J, et al. "One stone two birds" strategy of synthesizing the battery material lithium sulfide: Aluminothermal reduction of lithium sulfate[J]. Inorganic Chemistry, 2023, 62(14): 5576-5585. DOI:10.1021/acs.inorgchem.3c00087. |
38 | ZHANG Q R, HAN A G, ZHANG X, et al. Green synthesis for battery materials: A case study of making lithium sulfide via metathetic precipitation[J]. ACS Applied Materials & Interfaces, 2023, 15(1): 1358-1366. DOI:10.1021/acsami.2c19218. |
39 | LI Y Y, CHENG J, LI J W, et al. Indium doped sulfide solid electrolyte with tamed lithium dendrite and improved ionic conductivity for all-solid-state battery applications[J]. Journal of Power Sources, 2022, 542: 231794. DOI:10.1016/j.jpowsour. 2022.231794. |
40 | ZHOU J B, CHEN P, WANG W, et al. Li7P3S11 electrolyte for all-solid-state lithium-ion batteries: Structure, synthesis, and applications[J]. Chemical Engineering Journal, 2022, 446: 137041. DOI:10.1016/j.cej.2022.137041. |
41 | SMITH W H, VASELABADI S A, WOLDEN C A. Argyrodite superionic conductors fabricated from metathesis-derived Li2S[J]. ACS Applied Energy Materials, 2022, 5(4): 4029-4035. DOI:10.1021/acsaem.2c00442. |
42 | ZHANG X, YANG H Y, SUN Y J, et al. Lithium sulfide: Magnesothermal synthesis and battery applications[J]. ACS Applied Materials & Interfaces, 2022, 14(36): 41003-41012. DOI:10.1021/acsami.2c11196. |
43 | JANG B, WOO J, SONG Y B, et al. Microwave heating enables near-carbonless liquid-phase-derived Li Argyrodites for all-solid-state batteries[J]. Energy Storage Materials, 2024, 65: 103154. DOI:10.1016/j.ensm.2023.103154. |
44 | JIANG H Z, HAN Y, WANG H, et al. In-situ generated Li2S-based composite cathodes with high mass and capacity loading for all-solid-state Li-S batteries[J]. Journal of Alloys and Compounds, 2021, 874: 159763. DOI:10.1016/j.jallcom.2021.159763. |
45 | YAN H F, WANG H C, WANG D H, et al. In situ generated Li2S-C nanocomposite for high-capacity and long-life all-solid-state lithium sulfur batteries with ultrahigh areal mass loading[J]. Nano Letters, 2019, 19(5): 3280-3287. DOI:10.1021/acs.nanolett.9b00882. |
46 | ZHANG K, WANG L J, HU Z, et al. Ultrasmall Li2S nanoparticles anchored in graphene nanosheets for high-energy lithium-ion batteries[J]. Scientific Reports, 2014, 4: 6467. DOI:10.1038/srep 06467. |
47 | YE F M, NOH H, LEE J H, et al. Li2S/carbon nanocomposite strips from a low-temperature conversion of Li2SO4 as high-performance lithium-sulfur cathodes[J]. Journal of Materials Chemistry A, 2018, 6(15): 6617-6624. DOI:10.1039/C8TA00515J. |
48 | TAN G Q, XU R, XING Z Y, et al. Burning lithium in CS2 for high-performing compact Li2S-graphene nanocapsules for Li-S batteries[J]. Nature Energy, 2017, 2(7): 17090. DOI:10.1038/nenergy.2017.90. |
49 | DRESSEL C B, JHA H, EBERLE A M, et al. Electrochemical performance of lithium-sulfur batteries based on a sulfur cathode obtained by H2S gas treatment of a lithium salt[J]. Journal of Power Sources, 2016, 307: 844-848. DOI:10.1016/j.jpowsour.2015.12.140. |
50 | LI X M, WOLDEN C A, BAN C M, et al. Facile synthesis of lithium sulfide nanocrystals for use in advanced rechargeable batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(51): 28444-28451. DOI:10.1021/acsami.5b09367. |
51 | YANG S J, WAN F M, HAN A G, et al. Environmentally friendly, non-glove box, closed-system and continuously massive production of lithium sulfide for battery applications[J]. Journal of Cleaner Production, 2023, 382: 135221. DOI:10.1016/j.jclepro. 2022.135221. |
52 | 李良彬, 叶明, 潘志芳, 等. 一种利用电池级金属锂制备高纯硫化锂的方法: 中国, CN116040587A [P]. 2023. |
LI L B, YE M, PAN Z F, et al. A method for preparing high purity lithium sulfide from battery grade lithium metal: China, CN116040587A [P]. 2023. | |
53 | 李良彬, 廖萃, 潘志芳, 等. 一种利用金属锂制备硫化锂的方法: CN112607712A[P]. 2021-04-06. |
54 | YUAN K, YUAN L X, CHEN J, et al. Methods and cost estimation for the synthesis of nanosized lithium sulfide[J]. Small Structures, 2021, 2(3): 2000059. DOI:10.1002/sstr.202000059. |
55 | 于姗, 段元刚, 张怡欣, 等. 分步法分解硫化氢制氢和硫黄催化剂研究进展[J]. 化工进展, 2023, 42(7): 3780-3790. DOI: 10.16085/j.issn.1000-6613.2022-1633. |
YU S, DUAN Y G, ZHANG Y X, et al. Research progress of catalysts for two-step hydrogen sulfide decomposition to produce hydrogen and sulfur[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3780-3790. DOI: 10.16085/j.issn.1000-6613.2022-1633. | |
56 | YU P, ZHAI Y M, BAO R Y, et al. Rapid, repeatable, highly sensitive and semi-quantitative colorimetric detection of elemental sulfur with a colored clathrate[J]. Sensors and Actuators B: Chemical, 2019, 299: 126948. DOI:10.1016/j.snb. 2019.126948. |
57 | SUN Y J, ZHANG X, XU S J, et al. A green method of synthesizing battery-grade lithium sulfide: Hydrogen reduction of lithium sulfate[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(7): 2813-2824. DOI:10.1021/acssuschemeng.3c07872. |
58 | WU Z Z, HAN C, WANG J S, et al. Low-cost synthesis of high-purity Li2S for sulfide solid state electrolytes enabled by polyvinyl alcohol[J]. Journal of Central South University, 2024, 31(12): 4449-4459. DOI:10.1007/s11771-024-5824-z. |
59 | 雷振, 陈格, 徐川, 等. 氮化锂对金属锂制备硫化锂改性研究[J]. 矿冶工程, 2024, 44(4): 81-83. |
LEI Z, CHEN G, XU C, et al. Modification of lithium sulfide prepared with lithium metal by lithium nitride[J]. Mining and Metallurgical Engineering, 2024, 44(4): 81-83. | |
60 | 雷振, 徐川, 陈格, 等. 基于静电喷雾的纳米级硫化锂及其制备方法: 中国, CN117246980A [P]. 2023. |
LEI Z, XU C, CHEN G, et al. Preparation of nano-scale lithium sulfide based on electrostatic spray: China, CN117246980A [P]. 2023. | |
61 | 刘芳洋, 何特特, 张宗良, 等. 一种以含锂矿石为原料制备硫化锂的方法: 中国, CN202411103832.6 [P]. 2024. |
LIU F Y, HE T T, ZHANG Z L, et al. A method for preparation of lithium sulfide from lithium containing ore: China, CN202411103832.6 [P]. 2024. | |
62 | 刘芳洋, 李莉璇, 何特特, 等. 一种以废旧锂离子电池为原料制备硫化锂的方法: CN119018856A[P]. 2024-11-26. |
63 | 凌忠钱. 多孔介质内超绝热燃烧及硫化氢高温裂解制氢的试验研究和数值模拟 [D]. 杭州: 浙江大学, 2008. |
LING Z Q. Experimental Study and numerical simulation of superadiabatic combustion and pyrolysis of hydrogen sulfide in porous media for hydrogen production [D].Hangzhou: Zhejiang University, 2008. | |
64 | 凌忠钱, 周昊, 钱欣平, 等. 硫化氢高温裂解制氢的动力学研究[J]. 热能动力工程, 2008, 23(5): 547-550, 559. |
LING Z Q, ZHOU H, QIAN X P, et al. Kinetics study of hydrogen preparation from a pyrolysis of hydrogen sulfide[J]. Journal of Engineering for Thermal Energy and Power, 2008, 23(5): 547-550, 559. |
[1] | 党少佳, 孙利强, 王深友, 田文涛, 胡鹏飞. 计及系统经济性与荷电状态均衡的多储能电站调频双层功率优化策略[J]. 储能科学与技术, 2025, 14(3): 1247-1257. |
[2] | 孙利强, 党少佳, 刘岗, 王深友, 胡鹏飞. 考虑充放电转换状态与功率约束的储能电站调频功率优化方法[J]. 储能科学与技术, 2025, 14(3): 1286-1298. |
[3] | 杜陈强, 聂周缓, 王慧楠, 张纪伟, 张经纬. TiO2/TiN异质结内建电场的构筑及多硫化锂催化转化性能研究[J]. 储能科学与技术, 2024, 13(8): 2499-2510. |
[4] | 侯世豪, 赵波, 张利. 能源转型下基于碳排放与新能源阶梯惩罚的抽水蓄能双层优化研究[J]. 储能科学与技术, 2024, 13(7): 2414-2424. |
[5] | 林旗力, 陈珍, 王晓虎, 戚宏勋, 王伟. 基于“电-氢-电”过程的规模化氢储能经济性分析[J]. 储能科学与技术, 2024, 13(6): 2068-2077. |
[6] | 赵添辰, 张弓, 张云飞, 侯世豪, 王婷婷. “双碳”目标下抽水蓄能提升系统保供能力的技术经济性研究[J]. 储能科学与技术, 2024, 13(3): 1059-1073. |
[7] | 王运, 蒙飞, 张超, 李涛, 田波, 李江鹏, 陈海东, 张志华. 氨分解制氢储能系统容量对电力系统性能的影响[J]. 储能科学与技术, 2024, 13(2): 589-597. |
[8] | 谭超, 王超. 功能化氧化石墨烯作为锂硫电池正极硫载体的性能研究[J]. 储能科学与技术, 2023, 12(4): 1025-1033. |
[9] | 林旗力, 戚宏勋, 黄晶晶, 张炳成, 陈珍, 肖振坤. 碱性-质子交换膜水电解复合制氢平准化成本分析[J]. 储能科学与技术, 2023, 12(11): 3572-3580. |
[10] | 沈李园, 张桂鑫, 马兆玲. O-NiCo2S4/CNT复合材料对多硫化锂催化转化性能研究[J]. 储能科学与技术, 2023, 12(11): 3318-3329. |
[11] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[12] | 刘国静, 李冰洁, 胡晓燕, 岳芬, 徐际强. 澳大利亚储能相关政策与电力市场机制及对我国的启示[J]. 储能科学与技术, 2022, 11(7): 2332-2343. |
[13] | 张平, 康利斌, 王明菊, 赵广, 罗振华, 唐堃, 陆雅翔, 胡勇胜. 钠离子电池储能技术及经济性分析[J]. 储能科学与技术, 2022, 11(6): 1892-1901. |
[14] | 方亮, 张凯, 周丽敏. 铝离子电池电解液的研究进展[J]. 储能科学与技术, 2022, 11(4): 1236-1245. |
[15] | 李雄, 李培强. 梯次利用动力电池规模化应用经济性及经济边界分析[J]. 储能科学与技术, 2022, 11(2): 717-725. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||