储能科学与技术 ›› 2023, Vol. 12 ›› Issue (11): 3572-3580.doi: 10.19799/j.cnki.2095-4239.2023.0527
林旗力1(), 戚宏勋1(), 黄晶晶2, 张炳成2, 陈珍1, 肖振坤1
收稿日期:
2023-08-04
修回日期:
2023-08-28
出版日期:
2023-11-05
发布日期:
2023-11-16
通讯作者:
戚宏勋
E-mail:qllin@cpecc.net;hxqi@cpecc.net
作者简介:
林旗力(1985—),男,博士,高级工程师,主要从事储能、氢能技术与商业模式研究,E-mail:qllin@cpecc.net;
基金资助:
Qili LIN1(), Hongxun QI1(), Jingjing HUANG2, Bingcheng ZHANG2, Zhen CHEN1, Zhenkun XIAO1
Received:
2023-08-04
Revised:
2023-08-28
Online:
2023-11-05
Published:
2023-11-16
Contact:
Hongxun QI
E-mail:qllin@cpecc.net;hxqi@cpecc.net
摘要:
随着“碳达峰、碳中和”战略的推进,氢能的重要性不断提升。在绿氢制备领域,碱性水电解(AWE)-质子交换膜水电解(PEM)复合制氢技术具有很好的应用前景,但是该技术的经济性以往较少受关注。平准化制氢成本(levelized cost of hydrogen,LCOH)是从全生命周期尺度量化水电解制氢经济性的指标。本工作首先建立了制氢系统LCOH模型,并对按4∶1配置AWE和PEM的10000 m3/h复合制氢系统进行了定量分析,最后开展了敏感性分析。结果表明,复合制氢系统LCOH为33.22元/kg,比纯AWE制氢系统高3.31元/kg,其中电费成本占到其全生命周期成本的53.32%。提高PEM比例可有效提高制氢系统对可再生能源波动性的适应程度,但是PEM配置比例对制氢成本的影响较明显。实际项目中应密切关注电解槽设备的成本变化,通过LCOH模型优化PEM配置比例。以33.22元/kg H2为参考目标水平,当PEM电解槽系统价格下降20%和40%时,PEM配置比例可分别提高至27.92%和46.25%。与常规水电解制氢系统类似的是,控制电价对提高复合制氢技术经济性非常关键,电价下降0.01元/kWh可带来制氢系统LCOH约0.45元/kg H2的降幅。对于当前的配置比例,在采购预算有限的前提下建议优先考虑提升AWE电解槽系统的制氢电耗指标。
中图分类号:
林旗力, 戚宏勋, 黄晶晶, 张炳成, 陈珍, 肖振坤. 碱性-质子交换膜水电解复合制氢平准化成本分析[J]. 储能科学与技术, 2023, 12(11): 3572-3580.
Qili LIN, Hongxun QI, Jingjing HUANG, Bingcheng ZHANG, Zhen CHEN, Zhenkun XIAO. Levelized cost of combined hydrogen production by water electrolysis with alkaline-proton exchange membrane[J]. Energy Storage Science and Technology, 2023, 12(11): 3572-3580.
1 | Hydrogen Council, McKinsey & Company. Hydrogen for Net-Zero[R]. 2021. |
2 | 国家发展和改革委员会, 国家能源局. 氢能产业发展中长期规划(2021-2035年)[S/OL]. (2022-03-23) [2023-06-12]. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202203/t20220323_1320038.html. |
National Development and Reform Commission, National Energy Administration. Medium and long term plan for the development of hydrogen energy industry (2021-2035)[S/OL]. (2022-03-23) [2023-06-12]. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202203/t20220323_1320038.html. | |
3 | 葛磊蛟, 崔庆雪, 李明玮, 等. 风光波动性电源电解水制氢技术综述[J]. 综合智慧能源, 2022, 44(5): 1-14. |
GE L J, CUI Q X, LI M W, et al. Review on water electrolysis for hydrogen production powered by fluctuating wind power and PV[J]. Integrated Intelligent Energy, 2022, 44(5): 1-14. | |
4 | 程文姬, 赵磊, 郗航, 等. “十四五”规划下氢能政策与电解水制氢研究[J]. 热力发电, 2022, 51(11): 181-188. |
CHENG W J, ZHAO L, XI H, et al. Research on hydrogen energy policy and water-electrolytic hydrogen under the 14th Five-Year Plan[J]. Thermal Power Generation, 2022, 51(11): 181-188. | |
5 | 俞红梅, 邵志刚, 侯明, 等. 电解水制氢技术研究进展与发展建议[J]. 中国工程科学, 2021, 23(2): 146-152. |
YU H M, SHAO Z G, HOU M, et al. Hydrogen production by water electrolysis: Progress and suggestions[J]. Strategic Study of CAE, 2021, 23(2): 146-152. | |
6 | BOCKRIS J O. The origin of ideas on a Hydrogen Economy and its solution to the decay of the environment[J]. International Journal of Hydrogen Energy, 2002, 27(7/8): 731-740. |
7 | 国家发展改革委, 住房与城乡建设部发布. 建设项目经济评价方法与参数[M]. 3版. 北京: 中国计划出版社, 2006. |
8 | Renewable Energy Policy Network for the 21st Century. Renewables 2007 global status report[R]. 2008. |
9 | ZAKERI B, SYRI S. Electrical energy storage systems: A comparative life cycle cost analysis[J]. Renewable and Sustainable Energy Reviews, 2015, 42: 569-596. |
10 | GREINER C J, KORPÅS M, HOLEN A T. A Norwegian case study on the production of hydrogen from wind power[J]. International Journal of Hydrogen Energy, 2007, 32(10/11): 1500-1507. |
11 | LEE J Y, AN S, CHA K, et al. Life cycle environmental and economic analyses of a hydrogen station with wind energy[J]. International Journal of Hydrogen Energy, 2010, 35(6): 2213-2225. |
12 | VIKTORSSON L, HEINONEN J, SKULASON J, et al. A step towards the hydrogen economy-a life cycle cost analysis of a hydrogen refueling station[J]. Energies, 2017, 10(6): 763. |
13 | REVEL D. Renewable energy technologies: Cost analysis series[R]. 2012. |
14 | 王彦哲, 周胜, 周湘文, 等. 中国不同制氢方式的成本分析[J]. 中国能源, 2021, 43(5): 29-37. |
WANG Y Z, ZHOU S, ZHOU X W, et al. Cost analysis of different hydrogen production methods in China[J]. Energy of China, 2021, 43(5): 29-37. | |
15 | FAN J L, YU P W, LI K, et al. A levelized cost of hydrogen (LCOH) comparison of coal-to-hydrogen with CCS and water electrolysis powered by renewable energy in China[J]. Energy, 2022, 242: 123003. |
16 | 郭秀盈, 李先明, 许壮, 等. 可再生能源电解制氢成本分析[J]. 储能科学与技术, 2020, 9(3): 688-695. |
GUO X Y, LI X M, XU Z, et al. Cost analysis of hydrogen production by electrolysis of renewable energy[J]. Energy Storage Science and Technology, 2020, 9(3): 688-695. | |
17 | 徐进, 丁显, 宫永立, 等. 电解水制氢厂站经济性分析[J]. 储能科学与技术, 2022, 11(7): 2374-2385. |
XU J, DING X, GONG Y L, et al. Economic analysis of hydrogen production plant with water electrolysis[J]. Energy Storage Science and Technology, 2022, 11(7): 2374-2385. | |
18 | 饶文涛, 魏炜, 罗坚, 等. 基于AEL和PEM水电解的制氢系统及态势控制方法: CN113388856B[P]. 2022-09-02. |
RAO W T, WEI W, LUO J, et al. Hydrogen production system based on AEL and PEM water electrolysis and situation control method: CN113388856B[P]. 2022-09-02. . | |
19 | 中国气象局风能太阳能中心. 2022年中国风能太阳能资源年景公报[R/OL]. (2023-04-21) [2023-06-07]. https://www.cma.gov.cn/zfxxgk/gknr/qxbg/202304/t20230421_5454513.html. |
CMA Wind and Solar Energy Centre. CMA wind and solar energy resources bulletin for 2022[R/OL]. (2023-04-21) [2023-06-07]. https://www.cma.gov.cn/zfxxgk/gknr/qxbg/202304/t20230421_5454513.html. | |
20 | 白城吉电氢能科技有限公司. 白城分布式发电制氢加氢一体化示范项目环境影响报告表[R]. 2023. |
Baicheng Jidian Hydrogen Energy Technology Co. Ltd. Environmental impact report of Baicheng distributed generation hydrogen production and hydrogenation integrated demonstration project[R]. 2023. | |
21 | 大安吉电绿氢能源有限公司. 大安风光制绿氢合成氨一体化示范项目(制氢合成氨部分)环境影响报告书[R]. 2023. |
Daan Jidian Green Hydrogen Energy Co. Ltd. Environmental impact report of Da'an green hydrogen synthesis ammonia integration demonstration project (hydrogen synthesis ammonia part)[R]. 2023. | |
22 | 刘玮, 万燕鸣, 熊亚林, 等. 碳中和目标下电解水制氢关键技术及价格平准化分析[J]. 电工技术学报, 2022, 37(11): 2888-2896. |
LIU W, WAN Y M, XIONG Y L, et al. Key technology of water electrolysis and levelized cost of hydrogen analysis under carbon neutral vision[J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2888-2896. | |
23 | 百人会氢能中心, 车百智库. 氢储能经济性分析及应用前景研究[R]. 2023. |
EV100 Hydrogen Center, EV100plus. Economics analysis and prospect of hydrogen energy storage[R]. 2023. | |
24 | 孙翔, 刘成良, 牛霞, 等. 风光耦合制氢系统典型设计方案研究[J]. 南方能源建设, 2023, 10(3): 112-119. |
SUN X, LIU C L, NIU X, et al. Research on typical design of wind-solar coupled hydrogen production system[J]. Southern Energy Construction, 2023, 10(3): 112-119. | |
25 | 王盼. 基于平准化成本的绿氢产业经济性研究[J]. 石油石化绿色低碳, 2023, 8(2): 1-9. |
WANG P. Study on economy of green hydrogen industry based on levelized cost[J]. Green Petroleum & Petrochemicals, 2023, 8(2): 1-9. | |
26 | 潘光胜, 顾钟凡, 罗恩博, 等. 新型电力系统背景下的电制氢技术分析与展望[J]. 电力系统自动化, 2023, 47(10): 1-13. |
PAN G S, GU Z F, LUO E B, et al. Analysis and prospect of electrolytic hydrogen technology under background of new power systems[J]. Automation of Electric Power Systems, 2023, 47(10): 1-13. | |
27 | 国家发展和改革委员会. 关于2021年新能源上网电价政策有关事项的通知[S]. 2021. |
National Development and Reform Commission. Notice on matters related to the new energy feed-in tariff policy in 2021[S]. 2021. | |
28 | 内蒙古自治区发展和改革委员会. 深化燃煤发电上网电价形成机制改革的实施方案[R]. 2020. |
Inner Mongolia Autonomous Region Development and Reform Commission. Implementation plan for deepening the reform of the feed-in tariff mechanism for coal-fired power generation[R]. 2020. | |
29 | 张轩, 樊昕晔, 吴振宇, 等. 氢能供应链成本分析及建议[J]. 化工进展, 2022, 41(5): 2364-2371. |
ZHANG X, FAN X Y, WU Z Y, et al. Hydrogen energy supply chain cost analysis and suggestions[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2364-2371. | |
30 | KOJ J, WULF C, SCHREIBER A, et al. Site-dependent environmental impacts of industrial hydrogen production by alkaline water electrolysis[J]. Energies, 2017, 10(7): 860. |
31 | LEE B, CHAE H, CHOI N H, et al. Economic evaluation with sensitivity and profitability analysis for hydrogen production from water electrolysis in Korea[J]. International Journal of Hydrogen Energy, 2017, 42(10): 6462-6471. |
32 | 张朋程, 杨洁. 氢气价格的影响因素及对策研究[J]. 价格月刊, 2022(12): 22-29. |
ZHANG P C, YANG J. Research on the influencing factors and countermeasures of hydrogen price[J]. Prices Monthly, 2022(12): 22-29. | |
33 | 杨铮, 田桂丽. 我国氢气市场分析及发展前景研判[J]. 化学工业, 2022, 40(4): 51-57. |
YANG Z, TIAN G L. Market analysis and development outlook of hydrogen in China[J]. Chemical Industry, 2022, 40(4): 51-57. | |
34 | 张岑, 魏华, 庄妍, 等. 海上风电制氢经济评价模型及关键影响参数[J]. 天然气工业, 2023, 43(2): 146-154. |
ZHANG C, WEI H, ZHUANG Y, et al. Economic evaluation model of offshore wind to hydrogen and its key influence parameters[J]. Natural Gas Industry, 2023, 43(2): 146-154. | |
35 | 丁贵军. 应用核电进行碱性电解水制氢经济性分析[J]. 当代化工研究, 2023(6): 191-193. |
DING G J. Cost estimation of hydrogen production by alkaline water electrolysis using nuclear power[J]. Modern Chemical Research, 2023(6): 191-193. | |
36 | 齐宇博, 高达, 郑贤铃. 我国SPE制氢技术产业化经济性分析[J]. 储能科学与技术, 2022, 11(12): 4038-4047. |
QI Y B, GAO D, ZHENG X L. Economic analysis of SPE hydrogen production technology in China[J]. Energy Storage Science and Technology, 2022, 11(12): 4038-4047. | |
37 | 许传博, 张文座, 李忻颖, 等. 离网型光伏制氢项目经济性分析及压力测试[J]. 现代电力, 2023, 40(1): 1-7. |
XU C B, ZHANG W Z, LI X Y, et al. Economic analysis and stress test of off-grid photovoltaic hydrogen production projects[J]. Modern Electric Power, 2023, 40(1): 1-7. | |
38 | 中国人民银行货币政策司. 全国银行间同业拆借中心受权公布贷款市场报价利率(LPR)公告[EB/OL]. (2023-05-22) [2023-06-07]. http://www.pbc.gov.cn/zhengcehuobisi/125207/125213/125440/3876551/4858442/index.html. |
Monetary Policy Department of the People's Bank of China. The National Interbank Lending Center was authorized to publish the Loan Market Quotation Rate (LPR) announcement[EB/OL]. (2023-05-22) [2023-06-07]. http://www.pbc.gov.cn/zhengcehuobisi/125207/125213/125440/3876551/4858442/index.html. | |
39 | BNEF. Hydrogen economy outlook: Will hydrogen be the molecule to power a clean economy?[R]. London: Bloomberg New Energy Finance, 2020. |
40 | 王栋杰, 李宾斯, 周思恺. 新能源项目LCOE度电成本与IRR内部收益率的等效性分析[J]. 南方能源建设, 2023, 10(2): 101-109. |
WANG D J, LI B S, ZHOU S K. Equivalence analysis of LCOE and IRR for new energy projects[J]. Southern Energy Construction, 2023, 10(2): 101-109. |
[1] | 徐进, 丁显, 宫永立, 何广利, 胡婷. 电解水制氢厂站经济性分析[J]. 储能科学与技术, 2022, 11(7): 2374-2385. |
[2] | 江涵, 徐新智, 刘哲, 张锐, 胡旭. 沙特能源转型及氢能发展展望[J]. 储能科学与技术, 2022, 11(7): 2354-2365. |
[3] | 刘玮, 万燕鸣, 熊亚林, 刘坚. “双碳”目标下我国低碳清洁氢能进展与展望[J]. 储能科学与技术, 2022, 11(2): 635-642. |
[4] | 熊亚林, 刘玮, 高鹏博, 董斌琦, 赵铭生. “双碳”目标下氢能在我国合成氨行业的需求与减碳路径[J]. 储能科学与技术, 2022, 11(12): 4048-4058. |
[5] | 陆佳敏, 徐俊辉, 王卫东, 王浩, 徐孜俊, 陈留平. 大规模地下储氢技术研究展望[J]. 储能科学与技术, 2022, 11(11): 3699-3707. |
[6] | 万燕鸣, 熊亚林, 王雪颖. 全球主要国家氢能发展战略分析[J]. 储能科学与技术, 2022, 11(10): 3401-3410. |
[7] | 熊亚林, 许壮, 王雪颖, 高鹏博, 杨康. 我国加氢基础设施关键技术及发展趋势分析[J]. 储能科学与技术, 2022, 11(10): 3391-3400. |
[8] | 刘坚. 适应可再生能源消纳的储能技术经济性分析[J]. 储能科学与技术, 2022, 11(1): 397-404. |
[9] | 杨家豪, 施兆平, 王意波, 葛君杰, 刘长鹏, 邢巍. 用于酸性析氧反应研究的原位表征技术[J]. 储能科学与技术, 2021, 10(6): 1877-1890. |
[10] | 于旺, 孙超, 齐冀, 卞刘振, 彭继华, 彭军, 安胜利. 固体氧化物电池Sr2-xFe1.5Mo0.5O6-δ氧电极材料的电化学性能[J]. 储能科学与技术, 2021, 10(6): 2020-2027. |
[11] | 吴小员, 左哲伦, 郭诗钰, 汪 茹, 何建辉. 燃料电池物流车城市应用准备度评价[J]. 储能科学与技术, 2020, 9(5): 1574-1584. |
[12] | 赵月晶, 何广利, 缪平, 许壮, 杨康, 田中辉, 董文平, 熊亚林. 35 MPa/70 MPa加氢机加注性能综合评价研究[J]. 储能科学与技术, 2020, 9(3): 702-706. |
[13] | 李璐伶, 樊栓狮, 陈秋雄, 杨光, 温永刚. 储氢技术研究现状及展望[J]. 储能科学与技术, 2018, 7(4): 586-594. |
[14] | 王 朔1,2,张 军3. 我国制氢技术专利发展与工艺路线研究[J]. 储能科学与技术, 2018, 7(2): 353-362. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||