储能科学与技术 ›› 2023, Vol. 12 ›› Issue (11): 3572-3580.doi: 10.19799/j.cnki.2095-4239.2023.0527

• 储能技术经济性分析 • 上一篇    下一篇

碱性-质子交换膜水电解复合制氢平准化成本分析

林旗力1(), 戚宏勋1(), 黄晶晶2, 张炳成2, 陈珍1, 肖振坤1   

  1. 1.中国电力工程顾问集团有限公司中电储能工程技术研究院,上海 200333
    2.中国电力工程 顾问集团有限公司,北京 100120
  • 收稿日期:2023-08-04 修回日期:2023-08-28 出版日期:2023-11-05 发布日期:2023-11-16
  • 通讯作者: 戚宏勋 E-mail:qllin@cpecc.net;hxqi@cpecc.net
  • 作者简介:林旗力(1985—),男,博士,高级工程师,主要从事储能、氢能技术与商业模式研究,E-mail:qllin@cpecc.net
  • 基金资助:
    中国电力工程顾问集团有限公司重大科技专项(DG3-A03-2022)

Levelized cost of combined hydrogen production by water electrolysis with alkaline-proton exchange membrane

Qili LIN1(), Hongxun QI1(), Jingjing HUANG2, Bingcheng ZHANG2, Zhen CHEN1, Zhenkun XIAO1   

  1. 1.Engineering Technology Institute for Energy Storage of China Power Engineering Consulting Group Co. Ltd. , Shanghai 200333, China
    2.China Power Engineering Consulting Group Co. Ltd. , Beijing 100120, China
  • Received:2023-08-04 Revised:2023-08-28 Online:2023-11-05 Published:2023-11-16
  • Contact: Hongxun QI E-mail:qllin@cpecc.net;hxqi@cpecc.net

摘要:

随着“碳达峰、碳中和”战略的推进,氢能的重要性不断提升。在绿氢制备领域,碱性水电解(AWE)-质子交换膜水电解(PEM)复合制氢技术具有很好的应用前景,但是该技术的经济性以往较少受关注。平准化制氢成本(levelized cost of hydrogen,LCOH)是从全生命周期尺度量化水电解制氢经济性的指标。本工作首先建立了制氢系统LCOH模型,并对按4∶1配置AWE和PEM的10000 m3/h复合制氢系统进行了定量分析,最后开展了敏感性分析。结果表明,复合制氢系统LCOH为33.22元/kg,比纯AWE制氢系统高3.31元/kg,其中电费成本占到其全生命周期成本的53.32%。提高PEM比例可有效提高制氢系统对可再生能源波动性的适应程度,但是PEM配置比例对制氢成本的影响较明显。实际项目中应密切关注电解槽设备的成本变化,通过LCOH模型优化PEM配置比例。以33.22元/kg H2为参考目标水平,当PEM电解槽系统价格下降20%和40%时,PEM配置比例可分别提高至27.92%和46.25%。与常规水电解制氢系统类似的是,控制电价对提高复合制氢技术经济性非常关键,电价下降0.01元/kWh可带来制氢系统LCOH约0.45元/kg H2的降幅。对于当前的配置比例,在采购预算有限的前提下建议优先考虑提升AWE电解槽系统的制氢电耗指标。

关键词: 氢能, 水电解, 复合制氢, 平准化制氢成本, 经济性评价

Abstract:

In alignment with the "carbon peak, carbon neutral" initiative, the relevance of hydrogen energy is increasing. Although the integration of alkaline water electrolysis (AWE) and proton exchange membrane electrolysis (PEM) shows promise in the field of green hydrogen production, its economic viability has been less explored. To address this gap, we introduced a levelized cost of hydrogen (LCOH) model, offering a life-cycle economic assessment for hydrogen production. Quantitative analysis was conducted on a 10000 m3/h hydrogen production system configured with a 4∶1 ratio of AWEto PEM. Subsequently, sensitivity analysis was performed. The results showed that the LCOH for the combined hydrogen production system was 33.22 CNY/kg, which was 3.31 CNY/kg higher than that of the AWE hydrogen production system. Notably, the electricity costs constitute 53.32% of the entire life-cycle cost. Increasing the PEM allocation ratio improved the adaptibility of hydrogen production system to renewable energy fluctuations as well as increased the production cost. In actual projects, focus should be on the variations in the cost of the electrolyzer system, and the PEM allocation ratio could be optimized using the LCOH model. Considering 33.22 CNY/kg as the benchmark, a 20% and 40% reduction in the price of the PEM electrolyzer system increased the PEM allocation ratio to 27.92% and 46.25%, respectively. Similar to the conventional water-electrolysis hydrogen production systems, controlling the electricity price is crucial for enhancing the economic feasibility of combined hydrogen production; a reduction of 0.01 CNY/kWh in electricity price could lead to a decrease of 0.45 CNY/kg. Given the current allocation ratios, the improvement of AWE electrolyzer efficiency should be prioritized, especially when operating under budget constraints.

Key words: hydrogen energy, water electrolysis, combined hydrogen production, levelized cost of hydrogen, economic evaluation

中图分类号: