储能科学与技术 ›› 2025, Vol. 14 ›› Issue (6): 2391-2404.doi: 10.19799/j.cnki.2095-4239.2024.1198

• 储能系统与工程 • 上一篇    下一篇

基于CO2 混合工质的压缩储能系统性能

王斌1(), 谭鋆2,4, 李凤合3, 蔺新星1, 关苏敏2,4, 丁若晨1, 苏文3()   

  1. 1.中国三峡集团科学技术研究院,北京 101100
    2.中国长江电力股份有限公司,湖北 宜昌 443000
    3.中南大学能源科学与工程学院,湖南 长沙 410083
    4.湖北省智慧水电技术创新 中心,湖北 武汉 430000
  • 收稿日期:2024-12-17 修回日期:2025-02-07 出版日期:2025-06-28 发布日期:2025-06-27
  • 通讯作者: 苏文 E-mail:wang_bin14@ctg.com.cn;suwenzn@csu.edu.cn
  • 作者简介:王斌(1989—),男,硕士研究生,研究方向为可再生能源与清洁能源,E-mail:wang_bin14@ctg.com.cn
  • 基金资助:
    中国长江电力股份有限公司科研项目(Z152402007)

Performance research of compression energy storage system with CO2-based mixture

Bin WANG1(), Jun TAN2,4, Fenghe LI3, Xinxing LIN1, Sumin GUAN2,4, Ruochen DING1, Wen SU3()   

  1. 1.China Three Gorges Corporation, Beijing 101100, China
    2.China Yangtze Power Co. Ltd. , Yichang 443000, Hubei, China
    3.School of Energy Science and Engineering, Central South University, Changsha 410083, Hunan, China
    4.Hubei Technology Innovation Center for Smart Hydropower, Wuhan 430000, Hubei, China
  • Received:2024-12-17 Revised:2025-02-07 Online:2025-06-28 Published:2025-06-27
  • Contact: Wen SU E-mail:wang_bin14@ctg.com.cn;suwenzn@csu.edu.cn

摘要:

为了提高压缩储能系统的储能密度,同时解决CO2难以冷凝的问题,本工作提出了一种基于CO2混合工质的压缩储能系统,在高低压侧CO2混合工质均以液相的形式存储。构建了系统在稳态工况下的热经济模型,探讨7种CO2混合工质(CO2/R32、CO2/R41、CO2/R22、CO2/R125、CO2/R143a、CO2/R601和CO2/R601a)的系统适应性,并优选出最佳的CO2混合工质和组分配比,揭示关键运行参数对系统性能的影响。结果表明,随着CO2质量分数的增加,系统的储能效率和㶲效率均有所提升,其中CO2/R41、CO2/R32和CO2/R22的表现较优,且对CO2质量分数的敏感性较低。在7种混合工质中,CO2/R41(0.65/0.35)在设计工况下展现出最佳的热经济性,计算得到系统的储能效率和㶲效率分别为59.12%和53.11%;系统所需高低压储罐体积分别为5217.65 m3和2787.39 m3,得到储能密度为9.36 kWh/m3;系统投资成本为134.06×106 元,投资回收期为6.59 a。此外,对于压缩CO2/R41(0.65/0.35)储能系统,随着高压储罐温度的增加,储能效率和㶲效率线性提升,投资成本呈现先降后升的趋势;而低压储罐温度的升高导致储能效率和㶲效率下降,投资成本和投资回收期上升。

关键词: CO2混合工质, 压缩储能, 性能分析

Abstract:

To improve the energy storage density of compressed energy storage systems and address challenges in CO2 condensation, this study proposes a liquid-phase CO2-based compressed energy storage system, where CO2 mixtures are stored in liquid form on both high- and low-pressure sides. A steady-state thermal-economic model was developed to assess the system adaptability of seven CO2-based mixtures (CO2/R32, CO2/R41, CO2/R22, CO2/R125, CO2/R143a, CO2/R601, and CO2/R601a). In addition, the optimal CO2-based mixtures and mixing ratios were selected to reveal the impact of the key operating parameters on the system performance. The results demonstrate that with an increase in the CO2 mass fraction, the round-trip efficiency (RTE) and exergy efficiency (ηex) of the system are improved. CO2/R41, CO2/R32, and CO2/R22 exhibit superior performance and lower sensitivity to CO2 mass fraction. Among the seven mixed working fluids, CO2/R41 (0.65/0.35) demonstrated the best thermal-economic performance under design conditions, with RTE and ηex of 59.12% and 53.11%, respectively. The high- and low-pressure storage tanks require volumes of 5217.65 m3 and 2787.39 m3, respectively, achieving an energy storage density of 9.36 kWh/m3. The total capital cost (TCC) is 134.06×106 CNY, with a payback period (PBP) of 6.59 years. For the compressed CO2/R41 (0.65/0.35) energy storage system, increasing the high-pressure storage tank temperature linearly increases RTE and ηex, whereas TCC initially decreases before increasing. Conversely, an increase in the temperature of the low-pressure storage tank decreased RTE and ηex while increasing both TCC and PBP.

Key words: CO2-based mixture, compression energy storage, performance analysis

中图分类号: