储能科学与技术 ›› 2025, Vol. 14 ›› Issue (6): 2405-2415.doi: 10.19799/j.cnki.2095-4239.2025.0080

• 储能系统与工程 • 上一篇    下一篇

考虑放电倍率的电池储能容量自适应SOC估计方法

贺悝(), 冷肇星, 谭庄熙(), 李雪源, 吴晓文, 陈超洋   

  1. 湖南科技大学信息与电气工程学院,湖南 湘潭 411201
  • 收稿日期:2025-01-24 修回日期:2025-02-22 出版日期:2025-06-28 发布日期:2025-06-27
  • 通讯作者: 谭庄熙 E-mail:helifamily@foxmail.com;tanzhuangxi@foxmail.com
  • 作者简介:贺悝(1991—),男,博士,副教授,研究方向为储能高效利用、新能源电力系统析与控制,E-mail:helifamily@foxmail.com
  • 基金资助:
    国家自然科学基金(52207097);湖南省自然科学基金(2022JJ50006)

Estimation of the state of charge of energy-storage batteries based on adaptive capacity considering the discharge rate

Li HE(), Zhaoxing LENG, Zhuangxi TAN(), Xueyuan LI, Xiaowen WU, Chaoyang CHEN   

  1. College of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
  • Received:2025-01-24 Revised:2025-02-22 Online:2025-06-28 Published:2025-06-27
  • Contact: Zhuangxi TAN E-mail:helifamily@foxmail.com;tanzhuangxi@foxmail.com

摘要:

随着新能源技术的快速发展,储能电池在电力系统中的应用日益广泛,准确估计荷电状态已经成为保障电池性能、延长使用寿命和确保安全运行的关键。为提高电网储能电池在变功率需求下的SOC估算精度,提出了一种基于容量动态修正的SOC估算方法。首先,针对传统SOC估算方法在复杂工况下的误差产生机理进行了深入分析,并提出了总体改进思路;其次,分析了储能电池在不同放电倍率下的容量变化特性,建立了放电倍率及容量的定量表征模型,为精确估算SOC提供了理论基础;接着,提出一种融合深度神经网络与扩展卡尔曼滤波法结合的CLA-EKF估计算法,充分利用二者在处理复杂非线性关系以及抗干扰方面的优势,进一步构建了考虑放电倍率的容量自适应修正模型,显著提高了SOC估算的精度和稳定性。实验结果表明,本文提出的基于容量修正的CLA-EKF方法在多种变功率工况下显著提升了SOC估算的精度,验证了其优越性和适用性。本方法为电网储能电池多场景运行的SOC估计提供了有益参考,具有较好的实际应用价值。

关键词: 储能电池, SOC估计, 放电倍率, 卡尔曼滤波, 神经网络

Abstract:

With the rapid development of renewable energy technologies, energy-storage batteries have gained widespread application in power systems. Accurately estimating the state of charge (SOC) of batteries is critical for ensuring their performance and safe operation and extending their lifespan. To improve the accuracy of SOC estimation for grid energy-storage batteries under varying power demands, we propose a method based on dynamic capacity correction. First, the error-generation mechanism of traditional SOC estimation methods under complex operating conditions was analyzed, and a general improvement strategy was proposed. Second, the capacity variation characteristics of batteries at different discharge rates were analyzed, and a quantitative model that characterizes the relationship between discharge rate and capacity was established, providing a theoretical foundation for accurate SOC estimation. Next, a hybrid estimation algorithm, CLA-EKF, was developed by integrating deep neural networks with the extended Kalman filter (EKF). This approach leverages the advantages of both methods in handling complex nonlinear relationships and resisting disturbances. Furthermore, an SOC estimation method with adaptive capacity correction based on discharge rate was developed. The experimental results demonstrate that the proposed capacity-correction-based CLA-EKF method significantly improves the accuracy of SOC estimation under various fluctuating power conditions, outperforming conventional methods. This study provides an effective solution for SOC estimation in grid energy-storage systems with high practical application value.

Key words: energy storage battery, SOC estimation, discharge rate, Kalman filter method, neural network

中图分类号: