储能科学与技术 ›› 2025, Vol. 14 ›› Issue (6): 2405-2415.doi: 10.19799/j.cnki.2095-4239.2025.0080
贺悝(), 冷肇星, 谭庄熙(
), 李雪源, 吴晓文, 陈超洋
收稿日期:
2025-01-24
修回日期:
2025-02-22
出版日期:
2025-06-28
发布日期:
2025-06-27
通讯作者:
谭庄熙
E-mail:helifamily@foxmail.com;tanzhuangxi@foxmail.com
作者简介:
贺悝(1991—),男,博士,副教授,研究方向为储能高效利用、新能源电力系统析与控制,E-mail:helifamily@foxmail.com;
基金资助:
Li HE(), Zhaoxing LENG, Zhuangxi TAN(
), Xueyuan LI, Xiaowen WU, Chaoyang CHEN
Received:
2025-01-24
Revised:
2025-02-22
Online:
2025-06-28
Published:
2025-06-27
Contact:
Zhuangxi TAN
E-mail:helifamily@foxmail.com;tanzhuangxi@foxmail.com
摘要:
随着新能源技术的快速发展,储能电池在电力系统中的应用日益广泛,准确估计荷电状态已经成为保障电池性能、延长使用寿命和确保安全运行的关键。为提高电网储能电池在变功率需求下的SOC估算精度,提出了一种基于容量动态修正的SOC估算方法。首先,针对传统SOC估算方法在复杂工况下的误差产生机理进行了深入分析,并提出了总体改进思路;其次,分析了储能电池在不同放电倍率下的容量变化特性,建立了放电倍率及容量的定量表征模型,为精确估算SOC提供了理论基础;接着,提出一种融合深度神经网络与扩展卡尔曼滤波法结合的CLA-EKF估计算法,充分利用二者在处理复杂非线性关系以及抗干扰方面的优势,进一步构建了考虑放电倍率的容量自适应修正模型,显著提高了SOC估算的精度和稳定性。实验结果表明,本文提出的基于容量修正的CLA-EKF方法在多种变功率工况下显著提升了SOC估算的精度,验证了其优越性和适用性。本方法为电网储能电池多场景运行的SOC估计提供了有益参考,具有较好的实际应用价值。
中图分类号:
贺悝, 冷肇星, 谭庄熙, 李雪源, 吴晓文, 陈超洋. 考虑放电倍率的电池储能容量自适应SOC估计方法[J]. 储能科学与技术, 2025, 14(6): 2405-2415.
Li HE, Zhaoxing LENG, Zhuangxi TAN, Xueyuan LI, Xiaowen WU, Chaoyang CHEN. Estimation of the state of charge of energy-storage batteries based on adaptive capacity considering the discharge rate[J]. Energy Storage Science and Technology, 2025, 14(6): 2405-2415.
1 | 汤匀, 岳芳, 郭楷模, 等. 下一代电化学储能技术国际发展态势分析[J]. 储能科学与技术, 2022, 11(1): 89-97. DOI: 10.19799/j.cnki.2095-4239.2021.0301. |
TANG Y, YUE F, GUO K M, et al. International development trend analysis of next-generation electrochemical energy storage technology[J]. Energy Storage Science and Technology, 2022, 11(1): 89-97. DOI: 10.19799/j.cnki.2095-4239.2021.0301. | |
2 | 朱文韬, 周杨, 徐艺敏, 等. 电池储能技术在新能源发电系统中的应用与优化[J]. 储能科学与技术, 2024, 13(8): 2737-2739. DOI: 10.19799/j.cnki.2095-4239.2024.0690. |
ZHU W T, ZHOU Y, XU Y M, et al. Application and optimization of battery energy storage technology in new energy generation system[J]. Energy Storage Science and Technology, 2024, 13(8): 2737-2739. DOI: 10.19799/j.cnki.2095-4239.2024.0690. | |
3 | 尹喜阳, 王忠钰, 刘乙召, 等. 面向配电网削峰填谷的5G基站储能调控方法[J]. 电网与清洁能源, 2024, 40(8): 97-102. |
YIN X Y, WANG Z Y, LIU Y Z, et al. Energy storage dispatch of 5G base station energy storage for peak shaving and valley filling of distribution networks[J]. Power System and Clean Energy, 2024, 40(8): 97-102. | |
4 | 廖世强, 张新燕, 刘莎莎, 等. 储能电池一次调频无模型自适应控制策略[J]. 储能科学与技术, 2022, 11(10): 3221-3230. DOI: 10.19799/j.cnki.2095-4239.2022.0269. |
LIAO S Q, ZHANG X Y, LIU S S, et al. Model-free adaptive control strategy for primary frequency modulation of energy storage battery[J]. Energy Storage Science and Technology, 2022, 11(10): 3221-3230. DOI: 10.19799/j.cnki.2095-4239. 2022.0269. | |
5 | 梁继业, 袁至, 王维庆, 等. 基于电池储能系统的综合自适应一次调频策略[J]. 电工技术学报, 2025, 40(7): 2322-2334. DOI: 10.19595/j.cnki.1000-6753.tces.240456. |
LIANG J Y, YUAN Z, WANG W Q, et al. Comprehensive adaptive primary frequency control strategy based on battery energy storage system[J]. Transactions of China Electrotechnical Society, 2025, 40(7): 2322-2334. DOI: 10.19595/j.cnki.1000-6753.tces.240456. | |
6 | 李建林, 郭兆东, 曾伟, 等. 面向调频的锂电池储能建模及仿真分析[J]. 电力系统保护与控制, 2022, 50(13): 33-42. DOI: 10.19783/j.cnki.pspc.226227. |
LI J L, GUO Z D, ZENG W, et al. Modeling and simulation analysis of lithium battery energy storage oriented to frequency modulation[J]. Power System Protection and Control, 2022, 50(13): 33-42. DOI: 10.19783/j.cnki.pspc.226227. | |
7 | 谭必蓉, 杜建华, 叶祥虎, 等. 基于模型的锂离子电池SOC估计方法综述[J]. 储能科学与技术, 2023, 12(6): 1995-2010. DOI: 10.19799/j.cnki.2095-4239.2023.0016. |
TAN B R, DU J H, YE X H, et al. Overview of SOC estimation methods for lithium-ion batteries based on model[J]. Energy Storage Science and Technology, 2023, 12(6): 1995-2010. DOI: 10.19799/j.cnki.2095-4239.2023.0016. | |
8 | 寇发荣, 罗希, 门浩, 等. 基于特征优选与改进极限学习机的锂电池SOC估计[J]. 储能科学与技术, 2023, 12(4): 1234-1243. DOI: 10.19799/j.cnki.2095-4239.2022.0704. |
KOU F R, LUO X, MEN H, et al. State of charge estimation of lithium battery based on feature optimization and improved extreme learning machine[J]. Energy Storage Science and Technology, 2023, 12(4): 1234-1243. DOI: 10.19799/j.cnki.2095-4239.2022.0704. | |
9 | 黎冲, 王成辉, 王高, 等. 锂电池SOC估计的实现方法分析与性能对比[J]. 储能科学与技术, 2022, 11(10): 3328-3344. DOI: 10.19799/j.cnki.2095-4239.2022.0078. |
LI C, WANG C H, WANG G, et al. Review on implementation method analysis and performance comparison of lithium battery state of charge estimation[J]. Energy Storage Science and Technology, 2022, 11(10): 3328-3344. DOI: 10.19799/j.cnki.2095-4239.2022.0078. | |
10 | 陈峥, 杨博, 赵志刚, 等. 考虑锂电池温度和老化的荷电状态估算[J]. 储能科学与技术, 2024, 13(8): 2813-2822. DOI: 10.19799/j.cnki.2095-4239.2024.0141. |
CHEN Z, YANG B, ZHAO Z G, et al. State of charge estimation considering lithium battery temperature and aging[J]. Energy Storage Science and Technology, 2024, 13(8): 2813-2822. DOI: 10.19799/j.cnki.2095-4239.2024.0141. | |
11 | 付诗意, 吕桃林, 闵凡奇, 等. 电动汽车用锂离子电池SOC估算方法综述[J]. 储能科学与技术, 2021, 10(3): 1127-1136. DOI: 10.19799/j.cnki.2095-4239.2021.0013. |
FU S Y, LYU T L, MIN F Q, et al. Review of estimation methods on SOC of lithium-ion batteries in electric vehicles[J]. Energy Storage Science and Technology, 2021, 10(3): 1127-1136. DOI: 10.19799/j.cnki.2095-4239.2021.0013. | |
12 | SUN F C, HU X S, ZOU Y, et al. Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles[J]. Energy, 2011, 36(5): 3531-3540. DOI: 10. 1016/j.energy.2011.03.059. |
13 | 石怡康. 锂电池电荷状态预测的关键技术研究[D]. 成都: 电子科技大学, 2024. DOI: 10.27005/d.cnki.gdzku.2024.003295. |
SHI Y K. Key technology research on state of charge prediction for lithium batteries[D]. Chengdu: University of Electronic Science and Technology of China, 2024. DOI: 10.27005/d.cnki.gdzku. 2024.003295. | |
14 | 陈雨墨. 基于自适应扩展卡尔曼滤波的锂电池SOC估计[D]. 吉林: 东北电力大学, 2024. DOI: 10.27008/d.cnki.gdbdc.2024.000205. |
CHEN Y M. Lithium battery SOC estimation based on adaptive extended Kalman filter[D]. Jilin: Northeast Dianli University, 2024. DOI: 10.27008/d.cnki.gdbdc.2024.000205. | |
15 | 孙金磊, 邹鑫, 顾浩天, 等. 基于FFRLS-EKF联合算法的锂离子电池荷电状态估计方法[J]. 汽车工程, 2022, 44(4): 505-513. DOI: 10.19562/j.chinasae.qcgc.2022.04.006. |
SUN J L, ZOU X, GU H T, et al. State of charge estimation for lithium-ion battery based on FFRLS-EKF joint algorithm[J]. Automotive Engineering, 2022, 44(4): 505-513. DOI: 10.19562/j.chinasae.qcgc.2022.04.006. | |
16 | BHANGU B S, BENTLEY P, STONE D A, et al. Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2005, 54(3): 783-794. DOI: 10.1109/TVT.2004.842461. |
17 | XU K K, HE T L, YANG P, et al. A new online SOC estimation method using broad learning system and adaptive unscented Kalman filter algorithm[J]. Energy, 2024, 309: 132920. DOI: 10.1016/j.energy.2024.132920. |
18 | CHEN J X, ZHANG Y, WU J, et al. SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output[J]. Energy, 2023, 262: 125375. DOI: 10.1016/j.energy.2022.125375. |
19 | TIAN Y, LAI R C, LI X Y, et al. A combined method for state-of-charge estimation for lithium-ion batteries using a long short-term memory network and an adaptive cubature Kalman filter[J]. Applied Energy, 2020, 265: 114789. DOI: 10.1016/j.apenergy.2020.114789. |
20 | ZHAO H Y, LIAO C L, ZHANG C Z, et al. State-of-charge estimation of lithium-ion battery: Joint long short-term memory network and adaptive extended Kalman filter online estimation algorithm[J]. Journal of Power Sources, 2024, 604: 234451. DOI: 10.1016/j.jpowsour.2024.234451. |
21 | 苏振浩, 李晓杰, 秦晋, 等. 基于BP人工神经网络的动力电池SOC估算方法[J]. 储能科学与技术, 2019, 8(5): 868-873. |
SU Z H, LI X J, QIN J, et al. SOC estimation method of power battery based on BP artificial neural network[J]. Energy Storage Science and Technology, 2019, 8(5): 868-873. | |
22 | ALMAITA E, ALSHKOOR S, ABDELSALAM E, et al. State of charge estimation for a group of lithium-ion batteries using long short-term memory neural network[J]. Journal of Energy Storage, 2022, 52: 104761. DOI: 10.1016/j.est.2022.104761. |
23 | LIU D L, WANG S L, FAN Y C, et al. An optimized multi-segment long short-term memory network strategy for power lithium-ion battery state of charge estimation adaptive wide temperatures[J]. Energy, 2024, 304: 132048. DOI: 10.1016/j.energy.2024.132048. |
24 | CHEN Y, LI C L, CHEN S Z, et al. A combined robust approach based on auto-regressive long short-term memory network and moving horizon estimation for state-of-charge estimation of lithium-ion batteries[J]. International Journal of Energy Research, 2021, 45(9): 12838-12853. DOI: 10.1002/er.6615. |
25 | YANG F F, SONG X B, XU F, et al. State-of-charge estimation of lithium-ion batteries via long short-term memory network[J]. IEEE Access, 2019, 7: 53792-53799. |
26 | 宋洁, 赵雪莹, 朱玉婷, 等. 基于门控神经网络的储能电站荷电状态估计研究[J]. 电工电能新技术, 2022, 41(4): 82-88. |
SONG J, ZHAO X Y, ZHU Y T, et al. Storage battery SOC estimation based on gated recurrent unit neural network and dropout[J]. Advanced Technology of Electrical Engineering and Energy, 2022, 41(4): 82-88. | |
27 | 罗勇, 祁朋伟, 黄欢, 等. 基于容量修正的安时积分SOC估算方法研究[J]. 汽车工程, 2020, 42(5): 681-687. DOI: 10.19562/j.chinasae.qcgc.2020.05.017. |
LUO Y, QI P W, HUANG H, et al. Study on battery SOC estimation by ampere-hour integral method with capacity correction[J]. Automotive Engineering, 2020, 42(5): 681-687. DOI: 10.19562/j.chinasae.qcgc.2020.05.017. | |
28 | 韦莉, 张世博, 姚勇涛, 等. 基于动态容值修正的混合型超级电容器SOC估计[J]. 中国电机工程学报, 2017, 37(17): 5188-5197, 5239. DOI: 10.13334/j.0258-8013.pcsee.161642. |
WEI L, ZHANG S B, YAO Y T, et al. SOC estimation of hybrid supercapacitor based on dynamic capacitance correction[J]. Proceedings of the CSEE, 2017, 37(17): 5188-5197, 5239. DOI: 10.13334/j.0258-8013.pcsee.161642. | |
29 | 杨斌, 樊立萍, 高迎慧, 等. 高功率锂离子电池放电倍率对容量影响的研究[J]. 机械制造, 2023, 61(8): 1-4, 17. DOI: 10.3969/j.issn. 1000-4998.2023.08.002. |
YANG B, FAN L P, GAO Y H, et al. Study on influence of discharge rate of high-power lithium-ion battery on capacity[J]. Machinery, 2023, 61(8): 1-4, 17. DOI: 10.3969/j.issn.1000-4998. 2023.08.002. | |
30 | 李悦, 李天奇, 秦建华, 等. 18650磷酸铁锂电池不同放电倍率下产热机理研究[J]. 电源技术, 2021, 45(8): 1001-1004. |
LI Y, LI T Q, QIN J H, et al. Study on the heat generation mechanism of 18650 LiFePO4 battery under different discharge rates[J]. Chinese Journal of Power Sources, 2021, 45(8): 1001-1004. | |
31 | 王顺利, 李小霞, 熊莉英, 等. 锂电池等效电路建模与荷电状态估计[M]. 北京: 机械工业出版社, 2021. |
WANG S L, LI X X, XIONG L Y, et al. Lithium battery equivalent circuit modeling and state-of-charge estimation[M]. Beijing: China Machine Press, 2021. | |
32 | LI J, CHENG Y, JIA M, et al. An electrochemical-thermal model based on dynamic responses for lithium iron phosphate battery[J]. Journal of Power Sources, 2014, 255: 130-143. DOI: 10.1016/j.jpowsour.2014.01.007. |
33 | LAI Y Q, DU S L, AI L, et al. Insight into heat generation of lithium ion batteries based on the electrochemical-thermal model at high discharge rates[J]. International Journal of Hydrogen Energy, 2015, 40(38): 13039-13049. DOI: 10.1016/j.ijhydene.2015.07.079. |
[1] | 宋海飞, 王乐红, 原义栋, 赵天挺, 陈捷. 基于改进卡尔曼算法的电池采样电压滤波估计[J]. 储能科学与技术, 2025, 14(5): 2106-2113. |
[2] | 赵爽, 赵鹏远, 丁万钦, 刘斌, 王文东, 翟群芳, 李小龙. 基于集成神经网络的源-网-荷-储多能网络耦合优化调控研究[J]. 储能科学与技术, 2025, 14(5): 2057-2066. |
[3] | 李博文, 赵光金, 李雅敏, 杨宵, 张云潇, 董锐锋, 胡玉霞. 储能用锂离子电池老化过程监测:双层GeTe热电传感器[J]. 储能科学与技术, 2025, 14(4): 1352-1361. |
[4] | 申江卫, 折亦鑫, 舒星, 刘永刚, 魏福星, 夏雪磊, 陈峥. 基于短时随机充电数据和优化卷积神经网络的锂电池健康状态估计[J]. 储能科学与技术, 2025, 14(4): 1585-1595. |
[5] | 张朝龙, 陈阳, 刘梦玲, 张俣峰, 华国庆, 阴盼昐. 一种基于ICA-T特征和CNN-LA-BiLSTM的锂离子电池健康状态估计方法[J]. 储能科学与技术, 2025, 14(3): 1258-1269. |
[6] | 王婷婷, 李斯胜, 于伟, 能锋田, 李星南, 杨佳琳, 熊亮. 基于BP神经网络结合ERA5数据的风电功率预测[J]. 储能科学与技术, 2025, 14(1): 183-189. |
[7] | 李岳峰, 丁纬达, 韦银涛, 孙勇, 饶庆, 项峰, 姚颖聪. 关键因素对储能浸没式锂电池包温度特性影响的研究[J]. 储能科学与技术, 2025, 14(1): 152-161. |
[8] | 陆继忠, 彭思敏, 李晓宇. 基于多特征量分析和LSTM-XGBoost模型的锂离子电池SOH估计方法[J]. 储能科学与技术, 2024, 13(9): 2972-2982. |
[9] | 胡雪峰, 常先雷, 刘肖肖, 徐威, 张文彬. 适用于宽温度范围的锂离子电池SOC估计方法[J]. 储能科学与技术, 2024, 13(9): 2983-2994. |
[10] | 管鸿盛, 钱诚, 孙博, 任羿. 贫数据条件下锂离子电池容量退化轨迹预测方法[J]. 储能科学与技术, 2024, 13(9): 3084-3093. |
[11] | 柯学, 洪华伟, 郑鹏, 李智诚, 范培潇, 杨军, 郭宇铮, 蒯春光. 基于多时间尺度建模自动特征提取和通道注意力机制的锂离子电池健康状态估计[J]. 储能科学与技术, 2024, 13(9): 3059-3071. |
[12] | 李从心, 岳美玲, 李昕彤, 熊庆辉, 刘孝艳. 基于条件神经网络的质子交换膜燃料电池的老化性能预测[J]. 储能科学与技术, 2024, 13(9): 3094-3102. |
[13] | 邓斌, 华海明, 张与之, 王晓旭, 张林峰. 深度势能方法及其在电化学储能材料中的应用[J]. 储能科学与技术, 2024, 13(9): 2884-2906. |
[14] | 李清波, 张懋慧, 罗英, 吕桃林, 解晶莹. 基于等效电路模型融合电化学原理的锂离子电池荷电状态估计[J]. 储能科学与技术, 2024, 13(9): 3072-3083. |
[15] | 黄煜峰, 梁焕超, 许磊. 基于卡尔曼滤波算法优化Transformer模型的锂离子电池健康状态预测方法[J]. 储能科学与技术, 2024, 13(8): 2791-2802. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||