1 |
JIA Z Z, QIN P, LI Z, et al. Analysis of gas release during the process of thermal runaway of lithium-ion batteries with three different cathode materials [J]. Journal of Energy Storage, 2022, 50: 104302.1-104302.12.
|
2 |
FENG X, OUYANG M, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review [J]. Energy Storage Materials, 2018,10: 246-267.
|
3 |
ZHANG Y, LI S, MAO B, et al. A multi-level early warning strategy for the LiFePO4 battery thermal runaway induced by overcharge [J]. Applied energy, 2023, 347( Oct.1): 1.1-1.9.
|
4 |
廖正海,张国强. 锂离子电池热失控早期预警研究进展[J]. 电工电能新技术, 2019, 38(10):61-66.
|
|
LIAO Z H, ZHANG G Q. Research progress on early warning of thermal runaway in lithium-ion batteries [J]. New technologies in electrical engineering and energy,2019, 38(10):61-66.
|
5 |
王玉婷, 李秋桐, 胡一鸣等. 锂离子电池内部信号监测技术概述[J]. 储能科学与技术, 2024, 13(4): 1253-1265.
|
|
WANG Yuting, Li Qiutong, Hu Yiming, et al. Techniques for monitoring internal signals of lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(4): 1253-1265.
|
6 |
LI B, PAREKH M H, ADAMS R A, et al. Lithium-ion battery thermal safety by early internal detection, prediction and prevention[J]. Scientific Reports, 2019, 9(1): 13255.
|
7 |
PENG J, ZHAO X, MA J, et al. Enhancing lithium-ion battery monitoring: A critical review of diverse sensing approaches[J]. eTransportation, 2024, 22: 100360.
|
8 |
YANG L, LI N, HU L K, et al. Internal field study of 21700 battery based on long-life embedded wireless temperature sensor [J]. Acta Mechanica Sinica, 2021, 37(6): 895-901.
|
9 |
MEI W, LIU Z, WANG C, et al. Operando monitoring of thermal runaway in commercial lithium-ion cells via advanced lab-on-fiber technologies [J]. Nature Communications, 2023,14(1): 5251.
|
10 |
辛耀达, 李娜, 杨乐等.锂离子电池植入传感[J]. 储能科学与技术, 2022, 11(6): 1834-1846.
|
|
XIN Y D, LI N, YANG L, et al. Integrated sensing technology for lithium ion battery[J]. Energy Storage Science and Technology, 2022, 11(6): 1834-1846.
|
11 |
郑欣,韩屾,高梓恒,等. 热电性能测量方法[J]. 中国材料进展, 2022, 41(12):1018-1028.
|
|
ZHENG X, HAN Y, GAO Z H, et al. Thermoelectric performance measurement method [J]. Progress of Materials in China, 2022, 41(12):1018-1028.
|
12 |
SAMANTA M, GHOSH T, ARORA R, et al. Realization of both n- and p-type GeTe thermoelectrics: electronic structure modulation by AgBiSe2 alloying [J]. Journal of The American Chemical Society, 2019, 141(49):19505-19512.
|
13 |
LIU W D, WANG D Z, LIU Q F, et al. High-performance GeTe-based thermoelectrics: from materials to devices[J]. Advanced Energy Materials, 2020, 10(19): 2000367.
|
14 |
HONG M, LI M, WANG Y, et al. Advances in versatile GeTe thermoelectrics from materials to devices [J]. Advanced Materials, 2023, 35(2):e2208272.
|
15 |
ZHANG P, ZHAO F, LONG P, et al. Sonication-assisted liquid-phase exfoliated α-GeTe: a two-dimensional material with high Fe3+ sensitivity [J]. Nanoscale, 2018, 10(34):15989-15997.
|
16 |
BRAHIM M, YOUNG S L, HONG J S. High thermoelectric performance of two-dimensional α-GeTe bilayer [J]. Energy, 2020, 211: 118693-118702.
|
17 |
GRIMME S, ANTONY J, EHRLICH S, et al.. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu [J]. Journal of Chemical Physics, 2010, 132:154104-154113.
|
18 |
BRANDBYGE M, MOZOS J L, ORDEJÓN P, et al.Density-functional method for nonequilibrium electron transport [J]. Physical Review B 2002, 65:165401-165416.
|
19 |
GUNST T, MARKUSSEN T, PALSGAARD M L, et al. First-principles electron transport with phonon coupling: Large scale at low cost [J]. Physical Review B. 2017, 96(16):161404.
|