储能科学与技术 ›› 2025, Vol. 14 ›› Issue (7): 2662-2674.doi: 10.19799/j.cnki.2095-4239.2025.0072

• 第十三届储能国际峰会暨展览会专辑 • 上一篇    下一篇

基于模糊推理的储能系统锂离子电池模组热扩散概率评估方法

胡力月1(), 黄威1(), 周云1, 周英强1, 邵常政2, 王柯2   

  1. 1.国家电投集团重庆合川发电有限公司,重庆 401579
    2.重庆大学电气工程学院输变电装备 技术全国重点实验室,重庆 400044
  • 收稿日期:2025-01-22 修回日期:2025-02-14 出版日期:2025-07-28 发布日期:2025-07-11
  • 通讯作者: 黄威 E-mail:hly980911@163.com;hw1997@cqu.edu.cn
  • 作者简介:胡力月(1998—),女,硕士,从事锂离子电池热安全研究技术,E-mail:hly980911@163.com
  • 基金资助:
    国家电力投资集团有限公司科技项目(2024-HD-KYC004-CQGS-CQj);国家重点研发计划课题项目(2023YFA1011301)

Fuzzy reasoning-based evaluation of the thermal diffusion probability of lithium-ion battery modules for energy storage systems

Liyue HU1(), Wei HUANG1(), Yun ZHOU1, Yingqiang ZHOU1, Changzheng SHAO2, Ke WANG2   

  1. 1.State Power Investment Group Chongqing Hechuan Power Generation Co. , Ltd. , Chongqing 401579, China
    2.Transmission and Transformation Equipment of School of Electrical Engineering, Chongqing University, National Key Laboratory of Technology, Chongqing 400044, China
  • Received:2025-01-22 Revised:2025-02-14 Online:2025-07-28 Published:2025-07-11
  • Contact: Wei HUANG E-mail:hly980911@163.com;hw1997@cqu.edu.cn

摘要:

锂离子电池模组(lithium-ion battery module,LIBM)是当前储能系统中应用最广泛的电池组件,一旦发生热扩散事故,将会影响整个储能系统的可靠运行。然而,现有的热扩散定性分析模型无法直接用于定量评估时变运行条件下的LIBM热扩散概率。在此背景下,提出了一种基于模糊推理的LIBM热扩散概率评估方法。首先,利用COMSOL对LIBM热扩散行为进行建模,研究不同受热方式、LIBM排列方式、SOC(state of charge,SOC)对LIBM热扩散的影响,挖掘LIBM热扩散的规律。然后,基于仿真试验数据,建立以锂离子电池单体自身温度、单体间的距离、环境温度为输入,LIBM热扩散概率评估值为输出的模糊推理系统。为了提高评估结果的准确性,采用改进蜣螂优化算法(improved dung beetle optimizer,IDBO)对评估系统中隶属度函数的形状进行优化。结果表明:当LIBM内电池之间的接触面积变小时,热扩散速度变缓;当缓慢受热时,LIBM内最迟发生热失控的电池单体热失控温度更大。相较于传统蜣螂算法、粒子群算法和麻雀搜索算法,本文所提基于模糊推理的LIBM热扩散概率评估方法的PCC相关性指标可分别提高0.076、0.041和0.047,能够为工程实际中开展储能系统LIBM热扩散风险预警和防控提供更加合理的参考依据。

关键词: 储能系统, 锂离子电池模组, 热扩散概率, 模糊推理, 改进蜣螂优化算法

Abstract:

Lithium-ion battery modules (LIBMs) are currently the most widely used battery components in energy storage systems. Thermal runaway events can significantly compromise the reliable operation of an energy storage system. Existing models for the qualitative analysis of thermal diffusion cannot be directly used to evaluate the thermal diffusion probability of LIBMs quantitatively under time-varying operation conditions. To overcome this problem, a fuzzy reasoning-based method for evaluating the thermal diffusion probability of LIBMs is proposed in this work. The study first built a thermal diffusion simulation model of LIBMs on the COMSOL platform. This model was used to analyze the effects of various heating modes, LIBM arrangement configurations, and state of charge (SOC) on LIBMs and to investigate the mechanisms of thermal diffusion in LIBMs. Subsequently, a fuzzy reasoning system was constructed based on the simulation test data. The cell temperature, inter-cell distance, and ambient temperature of the lithium-ion battery were taken as inputs, and the LIBM thermal runaway probability was the output. To improve the accuracy of the evaluation results, the improved dung beetle optimizer (IDBO) was used to optimize the membership function parameters in the fuzzy reasoning system. The results revealed that reducing the contact area between cells in an LIBM effectively mitigated thermal diffusion; additionally, slow heating of the LIBM resulted in a higher thermal runaway temperature for the last cell in the module to experience thermal runaway. The Pearson correlation coefficient of the thermal diffusion probability evaluation results obtained by the proposed method was higher compared with that of the traditional dung beetle algorithm, particle swarm algorithm, and sparrow search algorithm by 0.076, 0.041, and 0.047 respectively. The high coefficient provides a more reasonable reference basis for the risk warning of LIBM thermal diffusion in energy storage systems in engineering practice.

Key words: energy storage system, lithium-ion battery module, thermal diffusion probability, fuzzy reasoning, improved dung beetle optimizer (IDBO)

中图分类号: