储能科学与技术 ›› 2025, Vol. 14 ›› Issue (7): 2791-2800.doi: 10.19799/j.cnki.2095-4239.2025.0036
杨儒松(), 侯朝霞(
), 李伟, 王颢然, 高旭, 龙海波
收稿日期:
2025-01-08
修回日期:
2025-02-12
出版日期:
2025-07-28
发布日期:
2025-07-11
通讯作者:
侯朝霞
E-mail:yrs15942221692@163.com;Luckyxia2007@126.com
作者简介:
杨儒松(2000—),男,硕士研究生,研究方向为储能材料,E-mail:yrs15942221692@163.com;
基金资助:
Rusong YANG(), Zhaoxia HOU(
), Wei LI, Haoran WANG, Xu GAO, Haibo LONG
Received:
2025-01-08
Revised:
2025-02-12
Online:
2025-07-28
Published:
2025-07-11
Contact:
Zhaoxia HOU
E-mail:yrs15942221692@163.com;Luckyxia2007@126.com
摘要:
通过控制合成条件制备出片层状氮掺杂还原氧化石墨烯(rGO-P),在此基础上将聚苯胺(PANI)/MnO2管状赝电容材料附着层间,采用两步复合法获得PANI/MnO2/rGO-P三元复合材料;利用X射线衍射技术(XRD)、扫描电子显微技术(SEM)和能量色散X射线谱(EDS)等对其进行微观形貌和结构表征;利用循环伏安法(CV)、恒流充放电(GCD)以及交流阻抗(EIS)等测试手段对三元复合材料的电化学性能进行了分析。电化学测试结果表明,在0.5 A/g的电流密度下,PANI/MnO2/rGO-P75的比电容高达635 F/g,当功率密度为0.45 kW/kg时,能量密度达到17.5 Wh/kg,综合性能要优于相同电流密度下的rGO-P和PANI/MnO2。此外,在1 A/g的电流密度下,PANI/MnO2/rGO-P75恒流充放电5000次循环后,仍有82.0%的电容保持率。本文制备的三元复合电极材料与二元复合的电极材料相比在提升超级电容器的性能方面效果显著。
中图分类号:
杨儒松, 侯朝霞, 李伟, 王颢然, 高旭, 龙海波. PANI/MnO2/rGO-P三元复合电极的制备及在超级电容器中的应用[J]. 储能科学与技术, 2025, 14(7): 2791-2800.
Rusong YANG, Zhaoxia HOU, Wei LI, Haoran WANG, Xu GAO, Haibo LONG. Preparation of PANI/MnO2/rGO-P ternary composite electrode and its application in supercapacitors[J]. Energy Storage Science and Technology, 2025, 14(7): 2791-2800.
表3
复合电极材料电化学性能对比"
样品名称 | 合成方法 | 比电容/(F/g) | 比电容保持率/% | 文献来源 |
---|---|---|---|---|
PANI/GN | 原位聚合法 | 468.5(0.1 A/g) | 84.9(0.1 A/g 1000次循环) | [ |
NSGP | 水热法 | 492(1 A/g) | 71.0(1 A/g 1000次循环) | [ |
RGO-PANI | 水热法 | 956(1 A/g单电极) | 73.8(10 A/g 10000次循环) | [ |
GP-P | 界面聚合法 | 135(1 A/g) | 95(2 A/g 10000次循环) | [ |
PANP/RGO | 界面聚合法 | 350(0.5 A/g) | 98.5(0.5 A/g 1000次循环) | [ |
H-RGO-MnO2 | 原位复合法 | 270.6(0.5 A/g) | 96(5 A/g 13000次循环) | [ |
RGO/δ-MnO2 | 螯合法 | 322(1 A/g) | 99.6(5 A/g 1000次循环) | [ |
PANI/MnO2-1 | 原位聚合法 | 2318(0.2 A/g) | 60.81(0.2 A/g 100次循环) | [ |
PANI/MnO2/rGO-P75 | 原位聚合法 | 635(0.5 A/g) | 82.0(1 A/g 5000次循环) | 本文 |
[1] | LIU S Y, YANG J, CHEN P, et al. Flexible electrodes for aqueous hybrid supercapacitors: Recent advances and future prospects[J]. Electrochemical Energy Reviews, 2024, 7(1): 25. DOI: 10. 1007/s41918-024-00222-z. |
[2] | ARIAS-PINEDO O M, LÓPEZ E O, MONJE I E, et al. Cotton pads-derived carbon materials/reduced graphene oxide modified with polypyrrole for electrode of supercapacitors[J]. Journal of Energy Chemistry, 2024, 94: 41-53. DOI: 10.1016/j.jechem. 2024.02.025. |
[3] | WANG D L, LIU N N, CHEN F, et al. Progress and prospects of energy storage technology research: Based on multidimensional comparison[J]. Journal of Energy Storage, 2024, 75: 109710. DOI: 10.1016/j.est.2023.109710. |
[4] | 张万松, 徐彦宾, 王峰, 等. 基于钴配合物所构建的超级电容器电极材料[J]. 化工时刊, 2023, 37(6): 33-36, 108. DOI: 10.16597/j.cnki.issn.1002-154x.2023.06.007. |
ZHANG W S, XU Y B, WANG F, et al. Electrode materials for supercapacitors based on cobalt complexes[J]. Chemical Industry Times, 2023, 37(6): 33-36, 108. DOI: 10.16597/j.cnki.issn.1002-154x.2023.06.007. | |
[5] | 梁华彬, 何明基, 钟新仙, 等. 双表面活性剂软模板制备超级电容器用聚苯胺/碳纳米管复合材料[J]. 功能材料, 2024, 55(10): 10211-10219. |
LIANG H B, HE M J, ZHONG X X, et al. Polyaniline/carbon nanotube composite materials prepared by soft template of double surfactants for supercapacitors[J]. Journal of Functional Materials, 2024, 55(10): 10211-10219. | |
[6] | 张亚飞. 碳纳米材料在超级电容器中的应用[J]. 材料导报, 2023, 37(S2): 37-43. |
ZHANG Y F. Carbon nanomaterials as supercapacitor electrodes[J]. Materials Reports, 2023, 37(S2): 37-43. | |
[7] | CUI S E, JIN D Y. Intercalation of organic molecules in the scaffold of graphene oxide liquid crystal[J]. Abstract of Research Papers at the Academic Conference of the Korean Polymer Society, 2021, 46(1): 112. |
[8] | HU J F, SONG H, SUN M J, et al. Enhanced photoelectrochemcial activity of TiO2 nanoparticles by graphene intercalation[J]. Surfaces and Interfaces, 2024, 54: 105149. DOI: 10.1016/j.surfin.2024.105149. |
[9] | ZHANG W B, SHI M Q, HENG Z X, et al. Soft particles enable fast and selective water transport through graphene oxide membranes[J]. Nano Letters, 2020, 20(10): 7327-7332. DOI: 10.1021/acs.nanolett.0c02724. |
[10] | HU Y, XIE X, SUN C B, et al. Study of the intercalation mechanisms of surfactants with different molecular structures on mildly oxidized graphite[J]. Chinese Journal of Engineering, 2020, 42(1): 84-90. DOI: 10.13374/j.issn2095-9389.2019.06.03.001. |
[11] | ZHAO X L, SUN H J, PENG T J. Changes of structure and functional group of reduction of graphene oxide with p-phenylene diamine[J]. Chemical Journal of Chinese Universities-Chinese, 2016, 37(4): 728-735. DOI: 10.7503/cjcu20150682. |
[12] | 苏香香, 杨蓉, 李兰, 等. 氮掺杂石墨烯的制备及其在化学储能中的研究进展[J]. 应用化学, 2018, 35(2): 137-146. |
SU X X, YANG R, LI L, et al. Research progress of preparation of nitrogen-doped graphene and its application in chemical energy storage[J]. Chinese Journal of Applied Chemistry, 2018, 35(2): 137-146. | |
[13] | 刘新, 毛喜玲, 闫欣雨, 等. 三维孔道NiMn-MOF电极材料制备及电化学性能研究[J]. 储能科学与技术, 2024, 13(2): 361-369. DOI: 10.19799/j.cnki.2095-4239.2023.0545. |
LIU X, MAO X L, YAN X Y, et al. Preparation and electrochemical properties of NiMn-MOF with 3D pore network electrode materials[J]. Energy Storage Science and Technology, 2024, 13(2): 361-369. DOI: 10.19799/j.cnki.2095-4239.2023.0545. | |
[14] | 孔妍妍, 张熊, 安亚斌, 等. MOF衍生多孔碳基材料的制备及其在锂离子电容器负极中的应用进展[J]. 储能科学与技术, 2024, 13(8): 2665-2678. DOI: 10.19799/j.cnki.2095-4239.2024.0050. |
KONG Y Y, ZHANG X, AN Y B, et al. Recent advances in preparation of MOF-derived porous carbon-based materials and their applications in anodes of lithium-ion capacitors[J]. Energy Storage Science and Technology, 2024, 13(8): 2665-2678. DOI: 10.19799/j.cnki.2095-4239.2024.0050. | |
[15] | CHEN K, TANG X K, JIA B B, et al. Graphene oxide bulk material reinforced by heterophase platelets with multiscale interface crosslinking[J]. Nature Materials, 2022, 21(10): 1121-1129. DOI: 10.1038/s41563-022-01292-4. |
[16] | ZHANG M Y, SONG Y, YANG D, et al. Redox poly-counterion doped conducting polymers for pseudocapacitive energy storage[J]. Advanced Functional Materials, 2021, 31(1): 2006203. DOI: 10.1002/adfm.202006203. |
[17] | XIA A, ZHAO C P, ZENG X X, et al. Preparation and electrochemical properties of B-doped MnO2[J]. Chinese Journal of Materials Research, 2021, 35(1): 36-44. DOI: 10.11901/1005.3093.2020.149. |
[18] | TANG X N, ZHU S K, NING J, et al. Charge storage mechanisms of manganese dioxide-based supercapacitors: A review[J]. New Carbon Materials, 2021, 36(4): 702-710. DOI: 10.1016/S1872-5805(21)60082-3. |
[19] | ZHANG Q Y, ZHAO J, CHEN X Y, et al. Unveiling the energy storage mechanism of MnO2 polymorphs for zinc-manganese dioxide batteries[J]. Advanced Functional Materials, 2024, 34(30): 2306652. DOI: 10.1002/adfm.202306652. |
[20] | CHEN J, YAO B W, LI C, et al. An improved Hummers method for eco-friendly synthesis of graphene oxide[J]. Carbon, 2013, 64: 225-229. DOI: 10.1016/j.carbon.2013.07.055. |
[21] | WANG X L, ZHAO J L, LI Z W, et al. Effects of preparation conditions on the supercapacitor performances of MnO2-PANI/titanium foam composite electrodes[J]. Journal of Nanoparticle Research, 2019, 21(6): 119. DOI: 10.1007/s11051-019-4557-7. |
[22] | 张志秦, 胡跃辉, 张效华, 等. AgNWs-rGO复合透明导电薄膜的制备及其稳定性研究[J]. 陶瓷学报, 2020, 41(1): 47-51. DOI: 10.13957/j.cnki.tcxb.2020.01.007. |
ZHANG Z Q, HU Y H, ZHANG X H, et al. Preparation and stability of AgNWs-rGO composite transparent conductive films[J]. Journal of Ceramics, 2020, 41(1): 47-51. DOI: 10.13957/j.cnki.tcxb.2020.01.007. | |
[23] | 张季, 刘伟, 王慎. 锰氧化物在芘污染土壤修复中的应用研究[J]. 中国锰业, 2022, 40(3): 27-32. DOI: 10.14101/j.cnki.issn.1002-4336.2022.03.005. |
ZHANG J, LIU W, WANG S. An application of manganese oxides in remediation of pyrene contaminated soil[J]. China Manganese Industry, 2022, 40(3): 27-32. DOI: 10.14101/j.cnki.issn.1002-4336.2022.03.005. | |
[24] | 赵洪生, 程广贵, 胡宏伟. 基于导电聚苯胺的离子凝胶柔性驱动器研究[J]. 化工新型材料, 2023, 51(7): 117-120. DOI: 10.19817/j.cnki.issn1006-3536.2023.07.021. |
ZHAO H S, CHENG G G, HU H W. Study on ionogel flexible actuator based on conductive polyaniline[J]. New Chemical Materials, 2023, 51(7): 117-120. DOI: 10.19817/j.cnki.issn1006-3536.2023.07.021. | |
[25] | 王卫, 林思伶, 马珮珮, 等. 聚苯胺/涤棉导电纱的制备及其性能表征[J]. 合成纤维, 2022, 51(7): 50-53. DOI: 10.16090/j.cnki.hcxw.2022.07.009. |
WANG W, LIN S L, MA P P, et al. Preparation and performance characterization of polyaniline/polyester-cotton conductive yarn[J]. Synthetic Fiber in China, 2022, 51(7): 50-53. DOI: 10.16090/j.cnki.hcxw.2022.07.009. | |
[26] | FENG Z. Ultra-flexible halloysite/polyaniline composite electrode basedon graphene electrode[J]. Energy Storage Science and Technology, 2023, 12(6): 1794-1803. |
[27] | 王华, 宋航. 铝表面聚苯胺的电化学合成与性能研究[J]. 表面技术, 2016, 45(4): 46-52. DOI: 10.16490/j.cnki.issn.1001-3660. 2016.04.008. |
WANG H, SONG H. Electrochemical synthesis and properties of polyaniline on aluminum surface[J]. Surface Technology, 2016, 45(4): 46-52. DOI: 10.16490/j.cnki.issn.1001-3660.2016.04.008. | |
[28] | ZHOU T T, WU B, DENG C, et al. Preparations and properties of manganese oxide and polyaniline-carbon composite electrode[J]. Journal of Electrochemistry, 2018, 106(2): 38-43. |
[29] | 李丹. 羟基取代醌类化合物氧化还原机理的研究——现场红外光谱电化学法[D]. 合肥: 安徽大学, 2014. |
LI D. Study on the redox mechanism of hydroxyquinones by in situ FT-IR spectroelectrochemistry[D]. Hefei: Anhui University, 2014. | |
[30] | 李子庆, 赫文秀, 张永强, 等. 不同氮源对掺氮石墨烯的结构和性能的影响[J]. 材料研究学报, 2018, 32(8): 616-624. |
LI Z Q, HE W X, ZHANG Y Q, et al. Effect of different nitrogen sources on structure and properties of nitrogen-doped graphene[J]. Chinese Journal of Materials Research, 2018, 32(8): 616-624. | |
[31] | 马丽丽. 聚苯胺掺杂的研究与发展[J]. 山东化工, 2017, 46(1): 56-58. DOI: 10.19319/j.cnki.issn.1008-021x.2017.01.018. |
MA L L. Research and development of polyaniline doped[J]. Shandong Chemical Industry, 2017, 46(1): 56-58. DOI: 10.19319/j.cnki.issn.1008-021x.2017.01.018. | |
[32] | LV H P, YUAN Y, XU Q J, et al. Carbon quantum dots anchoring MnO2/graphene aerogel exhibits excellent performance as electrode materials for supercapacitor[J]. Journal of Power Sources, 2018, 398: 167-174. DOI: 10.1016/j.jpowsour.2018.07.059. |
[33] | WANG H Y, DENG J, XU C M, et al. Ultramicroporous carbon cloth for flexible energy storage with high areal capacitance[J]. Energy Storage Materials, 2017, 7: 216-221. DOI: 10.1016/j.ensm.2017.03.002. |
[34] | SUN P, YI H, PENG T Q, et al. Ultrathin MnO2 nanoflakes deposited on carbon nanotube networks for symmetrical supercapacitors with enhanced performance[J]. Journal of Power Sources, 2017, 341: 27-35. DOI: 10.1016/j.jpowsour.2016.11.112. |
[35] | DANG S, WEN Y X, QIN T F, et al. Nanostructured manganese dioxide with adjustable Mn3+/Mn4+ ratio for flexible high-energy quasi-solid supercapacitors[J]. Chemical Engineering Journal, 2020, 396: 125342. DOI: 10.1016/j.cej.2020.125342. |
[36] | ZHANG Q E, ZHOU A A, WANG J J, et al. Degradation-induced capacitance: A new insight into the superior capacitive performance of polyaniline/graphene composites[J]. Energy & Environmental Science, 2017, 10(11): 2372-2382. DOI: 10.1039/C7EE02018J. |
[37] | ZHANG H M, QIU J Y, PANG J, et al. Sub-millisecond lithiothermal synthesis of graphitic meso–microporous carbon[J]. Nature Communications, 2024, 15: 3491. DOI: 10.1038/s41467-024-47916-y. |
[38] | 万晓娜, 张龙, 刘富强, 等. 一步法制备氧化石墨烯/聚苯胺/Au复合材料及电化学性能[J]. 功能材料, 2019, 50(2): 2156-2160, 2166. |
WAN X N, ZHANG L, LIU F Q, et al. One-step preparation of graphene oxide/polyaniline/Au composites and electrochemical properties[J]. Journal of Functional Materials, 2019, 50(2): 2156-2160, 2166. | |
[39] | 赵佐华, 黄寒星, 王红强, 等. 高性能聚苯胺/石墨烯复合材料的制备及在超级电容器中的应用[J]. 化工新型材料, 2013, 41(5): 163-165. |
ZHAO Z H, HUANG H X, WANG H Q, et al. Preparation and application of PANI/graphene composite materials with high performance for supercapacitor[J]. New Chemical Materials, 2013, 41(5): 163-165. | |
[40] | 梁华彬. 改性石墨烯在聚苯胺超级电容器中的应用[D]. 桂林: 广西师范大学, 2023. DOI: 10.27036/d.cnki.ggxsu.2023.000606. |
LIANG H B. Application of modified graphene in polyaniline supercapacitor[D]. Guilin: Guangxi Normal University, 2023. DOI: 10.27036/d.cnki.ggxsu.2023.000606. | |
[41] | YANG C, ZHANG L L, HU N T, et al. Rational design of sandwiched polyaniline nanotube/layered graphene/polyaniline nanotube papers for high-volumetric supercapacitors[J]. Chemical Engineering Journal, 2017, 309: 89-97. DOI: 10.1016/j.cej.2016.09.115. |
[42] | LI J P, XIAO D S, REN Y Q, et al. Bridging of adjacent graphene/polyaniline layers with polyaniline nanofibers for supercapacitor electrode materials[J]. Electrochimica Acta, 2019, 300: 193-201. DOI: 10.1016/j.electacta.2019.01.089. |
[43] | 卫大彪. 聚苯胺/还原氧化石墨烯复合膜的制备及其在超级电容器的应用[D]. 上海: 上海应用技术大学, 2021. DOI: 10.27801/d.cnki.gshyy.2021.000101. |
WEI D B. Preparation of polyaniline/reduced graphene oxide composite membrane and its application in supercapacitor[D]. Shanghai: Shanghai Institute of Technology, 2021. DOI: 10.27801/d.cnki.gshyy.2021.000101. | |
[44] | 唐晓宁, 夏澍, 罗秋洋, 等. 石墨烯-二氧化锰复合材料的制备及其在超级电容器中的应用[J]. 当代化工, 2022, 51(7): 1615-1619. DOI: 10.13840/j.cnki.cn21-1457/tq.2022.07.044. |
TANG X N, XIA S, LUO Q Y, et al. Preparation and application of graphene-manganese dioxide composites in supercapacitors[J]. Contemporary Chemical Industry, 2022, 51(7): 1615-1619. DOI: 10.13840/j.cnki.cn21-1457/tq.2022.07.044. | |
[45] | ZHU H Y, ZHAO J G, PANG M J, et al. Preparation of graphene/δ-MnO2 composites and supercapacitor performance[J]. CIESC Journal, 2017, 68(12): 4824-4832. DOI: 10.11949/j.issn.0438-1157.20171036. |
[46] | 张燕, 王继芬. 超级电容器PANI/MnO2复合材料电极的制备及性能研究[J]. 上海第二工业大学学报, 2022, 39(3): 218-224. DOI: 10.19570/j.cnki.jsspu.2022.03.005. |
ZHANG Y, WANG J F. Study on preparation and performance of PANI/MnO2 composite electrode for supercapacitor[J]. Journal of Shanghai Polytechnic University, 2022, 39(3): 218-224. DOI: 10.19570/j.cnki.jsspu.2022.03.005. |
[1] | 刘涛涛, 张少朋, 王艺斐, 林曦鹏. 有机多孔定形复合相变储热材料研究进展[J]. 储能科学与技术, 2025, 14(7): 2635-2653. |
[2] | 赵云鹏, 李彦芳, 崔昕浩, 孙海燕, 滕莹雪. 原位氮掺杂石墨烯的制备及超级电容器性能研究[J]. 储能科学与技术, 2025, 14(6): 2270-2277. |
[3] | 张亮, 周雄, 滕久康, 杨文静, 黎学明. 氟化科琴黑/石墨烯复合材料及电化学性能研究[J]. 储能科学与技术, 2025, 14(5): 1841-1849. |
[4] | 闫震, 刘强, 李会彬, 张俊, 蒋亚辉. 基于混合储能荷电状态的光伏微网功率优化管理方法[J]. 储能科学与技术, 2025, 14(5): 2067-2077. |
[5] | 徐桂培, 刘浩, 赖洁文, 卢毅锋, 黄辉, 邸会芳, 王振兵. 干法电极技术在超级电容器和锂离子电池中的研究进展[J]. 储能科学与技术, 2025, 14(4): 1445-1460. |
[6] | 全瑞星, 缪文晶, 袁长顺, 程广贵, 赵彦琦. 聚乙二醇基定型复合相变材料的研究进展[J]. 储能科学与技术, 2025, 14(3): 1010-1025. |
[7] | 周丽萍, 周德清, 郑锋华, 潘齐常, 胡思江, 蒋永杰, 王红强, 李庆余. 锂离子电池Si@Void@C复合负极材料的制备及其应用[J]. 储能科学与技术, 2025, 14(3): 1115-1122. |
[8] | 张新宇, 罗声豪, 吴颖欣, 刘针莹, 张立志, 凌子夜. 复合相变材料用于锂离子电池热管理和热失控防护研究进展[J]. 储能科学与技术, 2025, 14(3): 1040-1053. |
[9] | 陈艳, 黎子琦, 陈南豪, 张一弛, 吴晓鸿, 陈大柱. 聚乙二醇基聚合物固固相变材料的研究进展[J]. 储能科学与技术, 2025, 14(1): 124-139. |
[10] | 鲁杰, 杜娴, 师玉璞, 李卓, 曹娜, 杜珣涛, 杜慧玲. 高稳定水系锌离子电池PANI包覆钒化合物阴极材料[J]. 储能科学与技术, 2025, 14(1): 42-53. |
[11] | 冯仁超, 董宇, 朱新宇, 刘偲, 陈胜, 李达, 郭若禹, 王斌, 王炯辉, 李宁, 苏岳锋, 吴锋. 钠离子电池氧化石墨基负极研究进展[J]. 储能科学与技术, 2024, 13(6): 1835-1848. |
[12] | 刘新, 毛喜玲, 闫欣雨, 王俊强, 李孟委. 三维孔道NiMn-MOF电极材料制备及电化学性能研究[J]. 储能科学与技术, 2024, 13(2): 361-369. |
[13] | 唐盼春, 严嵘, 张灿, 孙泽. 堆叠式车载超级电容器热管理方式分析[J]. 储能科学与技术, 2024, 13(2): 483-491. |
[14] | 宋元明, 刘亚杰, 金光, 周星, 黄旭程. 锂离子电池/超级电容器混合储能系统能量管理方法综述[J]. 储能科学与技术, 2024, 13(2): 652-668. |
[15] | 王梦茹, 孙希瑞, 张浩煜, 陈健, 李友势. 支撑体改性对钙铜复合材料热化学储能特性的影响[J]. 储能科学与技术, 2024, 13(12): 4290-4298. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||