储能科学与技术 ›› 2025, Vol. 14 ›› Issue (9): 3269-3278.doi: 10.19799/j.cnki.2095-4239.2025.0055

• 储能材料与器件 • 上一篇    

柔性自支撑NiCo2S4@氮掺杂碳纳米纤维的制备及其储铝性能研究

杨文文1(), 刘建学2, 邓佳瑶3   

  1. 1.北京工业职业技术学院基础教育学院,北京 100042
    2.航天材料及工艺研究所,北京 100076
    3.中国电力科学研究院有限公司,北京 100192
  • 收稿日期:2025-01-13 修回日期:2025-02-20 出版日期:2025-09-28 发布日期:2025-09-05
  • 通讯作者: 杨文文 E-mail:yww@bgy.edu.cn
  • 作者简介:杨文文(1992—),女,博士,讲师,研究方向为电化学储能,E-mail:yww@bgy.edu.cn
  • 基金资助:
    北京工业职业技术学院重点科研课题(BGY2020KY-22z)

Flexible free-standing NiCo2S4@N-doped carbon nanofiber composite cathode for rechargeable aluminum-ion batteries

Wenwen YANG1(), Jianxue LIU2, Jiayao DENG3   

  1. 1.Beijing Polytechnic College, School of Basic Education, Beijing 100042, China
    2.Aerospace Research Institute of Materials & Processing Technology, Beijing 100076, China
    3.China Electric Power Research;Institute, Beijing 100192, China
  • Received:2025-01-13 Revised:2025-02-20 Online:2025-09-28 Published:2025-09-05
  • Contact: Wenwen YANG E-mail:yww@bgy.edu.cn

摘要:

可充电铝离子电池有望成为新一代低成本、高比能、高安全性的电化学储能系统,缺乏合适的正极材料是制约铝离子电池发展的主要因素之一。本工作采用静电纺丝结合热处理制备了氮掺杂碳纳米纤维(N-CNFs),将其作为水热反应基底负载双金属硫化物,获得了柔性自支撑NiCo2S4@N-CNFs复合结构。借助扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能谱分析(EDS)、X射线衍射(XRD)和X射线光电子能谱(XPS)等表征测试方法对其组成结构和形貌进行表征。将其直接作为铝离子电池的正极,通过恒电流充放电和循环伏安法(CV)对其比容量、循环稳定性以及倍率性能等电化学性能进行测试。结果表明,NiCo2S4@N-CNFs中,NiCo2S4呈花椰菜状,均匀地包裹在N-CNFs上,形成柔性自支撑结构,可直接作为铝离子电池的正极。在100 mA/g电流密度下,比容量可达到266.3 mAh/g,200次循环后,放电比容量仍可保持在151.6 mAh/g,表现出高比容量和优异的循环性能。在倍率性能测试中,经历了一系列较大的电流冲击后,比容量仍可恢复,表现出良好的倍率性能。通过分析充放电状态下NiCo2S4@N-CNFs的XRD以及Ni和Co的价态变化,证明了NiCo2S4的储铝机理为Ni和Co通过双金属协同效应共同完成Al3+的可逆嵌入与脱嵌。本研究为构建高性能铝离子电池正极材料提供了理论基础和设计依据。

关键词: 静电纺丝, 氮掺杂碳纳米纤维, NiCo2S4, 柔性自支撑, 铝离子电池

Abstract:

Rechargeable aluminum-ion batteries (AIBs) are regarded as promising next-generation electrochemical energy storage systems due to their high capacity, low cost, and enhanced safety. However, the development of high-performance cathode materials remains a critical challenge for the commercialization of AIBs. In this study, nitrogen-doped carbon nanofibers (N-CNFs) were synthesized via electrospinning and subsequent annealing, serving as substrates for a hydrothermal process to uniformly load bimetallic sulfide, resulting in a flexible, free-standing NiCo2S4@N-CNF composite. The composition, structure, and morphology were characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy. The NiCo2S4@N-CNF composite was directly employed as a cathode for AIBs, and its specific capacity, cycling stability, and rate performance were evaluated through constant current charge-discharge tests and cyclic voltammetry. The results demonstrate that the cauliflower-like NiCo2S4 is uniformly wrapped on the N-CNFs, forming a flexible, free-standing structure suitable for direct use as a cathode in AIBs. At a current density of 100 mA/g, the specific capacity reached 266.3 mA h/g, and after 200 cycles, it maintained a discharge capacity of 151.6 mAh/g, indicating excellent specific capacity and cycling stability. Moreover, in rate performance tests, the specific capacity recovered well after high current shocks, demonstrating good rate capability. Analysis of XRD patterns and valence state changes of Ni and Co during charge and discharge confirmed that the aluminum storage mechanism in NiCo2S4 involves the reversible intercalation and de-intercalation of Al3+ ions facilitated by the bimetallic synergistic effect. This study provides theoretical guidance and a design reference for the development of high-performance cathode materials for AIBs.

Key words: electrospinning, nitrogen-doped carbon nanofibers, NiCo2S4, flexible free-standing, aluminum-ion batterie

中图分类号: