[1] |
刘博宇, 庞青, 王腾飞, 等. 高镍三元正极材料LiNi0.8Co0.1Mn0.1O2在高压下的研究进展[J]. 储能科学与技术, 2024, 13(11): 3784-3795. DOI: 10.19799/j.cnki.2095-4239.2024.0432.
|
|
LIU B Y, PANG Q, WANG T F, et al. Advancements in the modification of high-voltage Ni-rich ternary cathode material LiNi0.8Co0.1Mn0.1O2 for lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(11): 3784-3795. DOI: 10. 19799/j.cnki.2095-4239.2024.0432.
|
[2] |
曾翠鸿, 陈秀娟, 李曼, 等. 钠离子电池P2-Na0.6Li0.27Mn0.73O2正极材料的W掺杂研究[J]. 储能科学与技术, 2024, 13(11): 3731-3741. DOI: 10.19799/j.cnki.2095-4239.2024.0511.
|
|
ZENG C H, CHEN X J, LI M, et al. Investigation of W-doped P2-Na0.6Li0.27Mn0.73O2 cathode materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(11): 3731-3741. DOI: 10.19799/j.cnki.2095-4239.2024.0511.
|
[3] |
GUO K, WANG W, JIAO S Q. Recent progress and prospective on layered anode materials for potassium-ion batteries[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(5): 1037-1052. DOI: 10.1007/s12613-022-2470-z.
|
[4] |
WANG M, JIANG C L, ZHANG S Q, et al. Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage[J]. Nature Chemistry, 2018, 10(6): 667-672. DOI: 10.1038/s41557-018-0045-4.
|
[5] |
WANG X S, DING J Y, CHEN J T, et al. Improved Li+ diffusion enabled by SEI film in a high-energy-density hybrid magnesium-ion battery[J]. Journal of Power Sources, 2019, 441: 227190. DOI: 10.1016/j.jpowsour.2019.227190.
|
[6] |
SUN T J, NIAN Q S, ZHENG S B, et al. Layered Ca0.28MnO2·0.5H2O as a high performance cathode for aqueous zinc-ion battery[J]. Small, 2020, 16(23): 2002852. DOI: 10.1002/smll.202002852.
|
[7] |
LIN M C, GONG M, LU B G, et al. An ultrafast rechargeable aluminium-ion battery[J]. Nature, 2015, 520(7547): 324-328. DOI: 10.1038/nature14340.
|
[8] |
DAS S K, MAHAPATRA S, LAHAN H. Aluminium-ion batteries: Developments and challenges[J]. Journal of Materials Chemistry A, 2017, 5(14): 6347-6367. DOI: 10.1039/C7TA00228A.
|
[9] |
RAMASUBRAMANIAN B, DE A, KOPERSKI M, et al. State-of-the-art carbon cathodes with their intercalation chemistry, performance, and challenges for aluminum-ion batteries[J]. ACS Applied Energy Materials, 2025, 8(2): 683-698. DOI: 10.1021/acsaem.4c02431.
|
[10] |
YANG H C, LI H C, LI J, et al. The rechargeable aluminum battery: Opportunities and challenges[J]. Angewandte Chemie International Edition, 2019, 58(35): 11978-11996. DOI: 10.1002/anie.201814031.
|
[11] |
CHEN H C, JIANG J J, ZHANG L, et al. Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors[J]. Nanoscale, 2013, 5(19): 8879-8883. DOI: 10.1039/C3NR02958A.
|
[12] |
XIAO J W, WAN L, YANG S H, et al. Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors[J]. Nano Letters, 2014, 14(2): 831-838. DOI: 10.1021/nl404199v.
|
[13] |
WEI C B, LIU H, GAN R H, et al. Flexible NiCo2S4-hollow carbon nanofibers electrocatalytic membrane as an advanced interlayer for lithium-sulfur batteries[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648: 129179. DOI: 10.1016/j.colsurfa.2022.129179.
|
[14] |
YANG W W, LU H M, CAO Y, et al. Single-/few-layered ultrasmall WS2 nanoplates embedded in nitrogen-doped carbon nanofibers as a cathode for rechargeable aluminum batteries[J]. Journal of Power Sources, 2019, 441: 227173. DOI: 10.1016/j.jpowsour. 2019.227173.
|
[15] |
崔华敏, 掌学谦, 胡攀登, 等. 杯[4]醌/N掺杂的无定形碳纳米纤维复合材料储锂性能[J]. 应用化学, 2020, 37(2): 198-204. DOI: 10. 11944/j.issn.1000-0518.2020.02.190236.
|
|
CUI H M, ZHANG X Q, HU P D, et al. Calix [4] quinone/N-doped amorphous carbon nanofibers composites for lithium-ion batteries[J]. Chinese Journal of Applied Chemistry, 2020, 37(2): 198-204. DOI: 10.11944/j.issn.1000-0518.2020.02.190236.
|
[16] |
ZHANG W M, CHEN J T, LIU Y Q, et al. Decoration of hollow nitrogen-doped carbon nanofibers with tapered rod-shaped NiCo2S4 as a 3D structural high-rate and long-lifespan self-supported anode material for potassium-ion batteries[J]. Journal of Alloys and Compounds, 2020, 823: 153631. DOI: 10.1016/j.jallcom.2019.153631.
|
[17] |
LI L, ZHANG X, LIU S A, et al. One-step hydrothermal synthesis of NiCo2S4 loaded on electrospun carbon nanofibers as an efficient counter electrode for dye-sensitized solar cells[J]. Solar Energy, 2020, 202: 358-364. DOI: 10.1016/j.solener.2020.03.110.
|
[18] |
SIVANANTHAM A, GANESAN P, SHANMUGAM S. Bifunctional electrocatalysts: Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: An efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions[J]. Advanced Functional Materials, 2016, 26(26): 4660. DOI: 10.1002/adfm. 201670166.
|
[19] |
LI S J, GE P, JIANG F, et al. The advance of nickel-cobalt-sulfide as ultra-fast/high sodium storage materials: The influences of morphology structure, phase evolution and interface property[J]. Energy Storage Materials, 2019, 16: 267-280. DOI: 10.1016/j.ensm.2018.06.006.
|
[20] |
BUAN M E M, MUTHUSWAMY N, WALMSLEY J C, et al. Nitrogen-doped carbon nanofibers for the oxygen reduction reaction: Importance of the iron growth catalyst phase[J]. ChemCatChem, 2017, 9(9): 1663-1674. DOI: 10.1002/cctc.2016 01585.
|
[21] |
BŁOŃSKI P, TUČEK J, SOFER Z, et al. Doping with graphitic nitrogen triggers ferromagnetism in graphene[J]. Journal of the American Chemical Society, 2017, 139(8): 3171-3180. DOI: 10. 1021/jacs.6b12934.
|
[22] |
YANG W W, LU H M, CAO Y, et al. A flexible free-standing cathode based on graphene-like MoSe2 nanosheets anchored on N-doped carbon nanofibers for rechargeable aluminum-ion batteries[J]. Ionics, 2020, 26(7): 3405-3413. DOI: 10.1007/s115 81-020-03476-x.
|
[23] |
WANG S, JIAO S Q, WANG J X, et al. High-performance aluminum-ion battery with CuS@C microsphere composite cathode[J]. ACS Nano, 2017, 11(1): 469-477. DOI: 10.1021/acsnano.6b06446.
|
[24] |
LI J, LUO W B, ZHANG Z, et al. ZnSe/SnSe2 hollow microcubes as cathode for high performance aluminum ion batteries[J]. Journal of Colloid and Interface Science, 2023, 639: 124-132. DOI: 10.1016/j.jcis.2023.02.057.
|
[25] |
WANG S, YU Z J, TU J G, et al. A novel aluminum-ion battery: Al/AlCl3-[EMIm] Cl/Ni3S2@Graphene[J]. Advanced Energy Materials, 2016, 6(13): 1600137. DOI: 10.1002/aenm.201600137.
|
[26] |
ZHANG K Q, LEE T H, CHA J H, et al. Properties of CoS2/CNT as a cathode material of rechargeable aluminum-ion batteries[J]. Electronic Materials Letters, 2019, 15(6): 727-732. DOI: 10.1007/s13391-019-00169-0.
|
[27] |
LI J F, HUI K S, ZHENG Y S, et al. Stabilizing anionic redox processes in electrospun NiS2-based cathode towards durable aluminum-ion batteries[J]. Chemical Engineering Journal, 2022, 450: 138237. DOI: 10.1016/j.cej.2022.138237.
|
[28] |
YU Z J, KANG Z P, HU Z Q, et al. Hexagonal NiS nanobelts as advanced cathode materials for rechargeable Al-ion batteries[J]. Chemical Communications, 2016, 52(68): 10427-10430. DOI: 10.1039/C6CC05974K.
|
[29] |
WU L, SUN R M, XIONG F Y, et al. A rechargeable aluminum-ion battery based on a VS2 nanosheet cathode[J]. Physical Chemistry Chemical Physics, 2018, 20(35): 22563-22568. DOI: 10.1039/C8CP04772C.
|
[30] |
LI H C, YANG H C, SUN Z H, et al. A highly reversible Co3S4 microsphere cathode material for aluminum-ion batteries[J]. Nano Energy, 2019, 56: 100-108. DOI: 10.1016/j.nanoen.2018.11.045.
|
[31] |
LI Z Y, NIU B B, LIU J, et al. Rechargeable aluminum-ion battery based on MoS2 microsphere cathode[J]. ACS Applied Materials & Interfaces, 2018, 10(11): 9451-9459. DOI: 10.1021/acsami.8b00100.
|
[32] |
ZHOU Q P, WANG D W, NI L B, et al. Willow leaf-shape ReSe2@C as positive electrode material for aluminum-ion batteries[J]. Journal of Alloys and Compounds, 2022, 909: 164773. DOI: 10.1016/j.jallcom.2022.164773.
|
[33] |
ZHANG X F, WANG S, TU J G, et al. Flower-like vanadium suflide/reduced graphene oxide composite: An energy storage material for aluminum-ion batteries[J]. ChemSusChem, 2018, 11(4): 709-715. DOI: 10.1002/cssc.201702270.
|
[34] |
ZHUANG R Y, MIAO G, HUANG Z L, et al. Non-stoichiometric CoS1.097 nanoparticles prepared from CoAl-layered double hydroxide and MOF template as cathode materials for aluminum-ion batteries[J]. Journal of Energy Chemistry, 2021, 54: 639-643. DOI: 10.1016/j.jechem.2020.06.047.
|
[35] |
ZHAO Z C, HU Z Q, LI Q, et al. Designing two-dimensional WS2 layered cathode for high-performance aluminum-ion batteries: From micro-assemblies to insertion mechanism[J]. Nano Today, 2020, 32: 100870. DOI: 10.1016/j.nantod.2020.100870.
|
[36] |
GRINDAL A, AZIMI G. Advancing aluminum-ion batteries: Unraveling the charge storage mechanisms of cobalt sulfide cathodes[J]. Scientific Reports, 2024, 14: 28468. DOI: 10.1038/s41598-024-78437-9.
|
[37] |
ZHOU J S, SONG H H, MA L L, et al. Magnetite/graphene nanosheet composites: Interfacial interaction and its impact on the durable high-rate performance in lithium-ion batteries[J]. RSC Advances, 2011, 1(5): 782-791. DOI: 10.1039/C1RA00402F.
|
[38] |
LI W W, MA Q B, SHEN P F, et al. Yolk-shell structured CuSi2P3@Graphene nanocomposite anode for long-life and high-rate lithium-ion batteries[J]. Nano Energy, 2021, 80: 105506. DOI: 10.1016/j.nanoen.2020.105506.
|
[39] |
ZHANG Y, LIU S Q, JI Y J, et al. Emerging nonaqueous aluminum-ion batteries: Challenges, status, and perspectives[J]. Advanced Materials, 2018, 30(38): 1706310. DOI: 10.1002/adma.201706310.
|