1 |
GONZÁLEZ A, GOIKOLEA E, BARRENA J A, et al. Review on supercapacitors: Technologies and materials[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 1189-1206.
|
2 |
PANDOLFO A G, HOLLENKAMP A F. Carbon properties and their role in supercapacitors[J]. Journal of Power Sources, 2006, 157(1): 11-27.
|
3 |
WANG H L, DAI H J. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage[J]. Chemical Society Reviews, 2013, 42(7): 3088-3113.
|
4 |
LI Y M, HAN X, YI T F, et al. Review and prospect of NiCo2O4-based composite materials for supercapacitor electrodes[J]. Journal of Energy Chemistry, 2019, 31: 54-78.
|
5 |
PUSAWALE S N, DESHMUKH P R, GUNJAKAR J L, et al. SnO2-RuO2 composite films by chemical deposition for supercapacitor application[J]. Materials Chemistry and Physics, 2013, 139(2/3): 416-422.
|
6 |
ZHU J, XIANG L, ZHOU Y Z, et al. Diethylenetriamine-assisted one-step hydrothermal synthesis of cotton-like CoS cluster for high-performance supercapacitor[J]. Materials Science-Poland, 2018, 36(2): 297-303.
|
7 |
PING Y J, YANG S J, HAN J Z, et al. N-self-doped graphitic carbon aerogels derived from metal-organic frameworks as supercapacitor electrode materials with high-performance[J]. Electrochimica Acta, 2021, 380: doi: 10.1016/j.electacta.2021.138237.
|
8 |
XU S Z, HAO H L, CHEN Y N, et al. Flexible all-solid-state supercapacitors based on PPy /rGO nanocomposite on cotton fabric[J]. Nanotechnology, 2021, 32(30): doi: 10.1088/1361-6528/abf9c4.
|
9 |
FAN Z J, YAN J, WEI T, et al. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density[J]. Advanced Functional Materials, 2011, 21(12): 2366-2375.
|
10 |
SHENG R, HU J D, LU X Y, et al. Solid-state synthesis and superior electrochemical performance of MnMoO4 nanorods for asymmetric supercapacitor[J]. Ceramics International, 2021, 47(11): 16316-16323.
|
11 |
PRABHU S, GOWDHAMAN A, HARISH S, et al. Synthesis of petal-like CoMoO4/r-GO composites for high performances hybrid supercapacitor[J]. Materials Letters, 2021, 295: doi:10.1016/j.matlet.2021.129821.
|
12 |
MUTHU D, VARGHEESE S, HALDORAI Y, et al. NiMoO4/reduced graphene oxide composite as an electrode material for hybrid supercapacitor[J]. Materials Science in Semiconductor Processing, 2021, 135: doi:10.1016/j.mssp.2021.106078.
|
13 |
SEEVAKAN K, MANIKANDAN A, DEVENDRAN P, et al. Microwave combustion synthesis, magneto-optical and electrochemical properties of NiMoO4 nanoparticles for supercapacitor application[J]. Ceramics International, 2018, 44(12): 13879-13887.
|
14 |
XIAO J W, WAN L, YANG S H, et al. Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors[J]. Nano Letters, 2014, 14(2): 831-838.
|
15 |
LI J F, CHEN D D, WU Q S. Facile synthesis of CoS porous nanoflake for high performance supercapacitor electrode materials[J]. Journal of Energy Storage, 2019, 23: 511-514.
|
16 |
SONG J, DU L J, WANG J Y, et al. NiS nanosheets synthesized by one-step microwave for high-performance supercapacitor[J]. Functional Materials Letters, 2021, 14(8): doi: 10.1142/S1793604721500351.
|
17 |
ZHAI S X, JIN K L, ZHOU M, et al. In-situ growth of flower-like CuS microsphere on carbonized cotton for high-performance flexible supercapacitor[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 575: 75-83.
|
18 |
NAVEENKUMAR P, PARUTHIMAL KALAIGNAN G. Electrodeposited MnS on graphene wrapped Ni-Foam for enhanced supercapacitor applications[J]. Electrochimica Acta, 2018, 289: 437-447.
|
19 |
ZHANG L S, ZHENG D L, PEI S L, et al. Rational fabrication of nanosheet-dewy NiMoO4/Ni3S2 nanohybrid for efficient hybrid supercapacitor[J]. Journal of Alloys and Compounds, 2019, 783: 399-408.
|
20 |
HAO L, SHEN L F, WANG J, et al. Hollow NiCo2S4 nanotube arrays grown on carbon textile as a self-supported electrode for asymmetric supercapacitors[J]. RSC Advances, 2016, 6(12): 9950-9957.
|
21 |
MANE S M, PAWAR S S, GO J S, et al. Asymmetric supercapacitor properties of fern-like nanostructured NiCo2S4 synthesized through a one-pot simple solvothermal method[J]. Materials Letters, 2021, 301: doi: 10.1016/j.matlet.2021.130262.
|
22 |
LIU S D, JUN S C. Hierarchical Manganese cobalt sulfide core-shell nanostructures for high-performance asymmetric supercapacitors[J]. Journal of Power Sources, 2017, 342: 629-637.
|
23 |
XU X Y, LIANG L N, ZHANG Z N, et al. Well-connected NiMoS4 nanosheets and Ni foam skeleton bonded through conductive reduced graphene oxide for highly efficient hybrid supercapacitor[J]. Diamond and Related Materials, 2021, 112: doi: 10.1016/j.diamond.2021.108240.
|
24 |
YU L, ZHANG L, WU H B, et al. Formation of NixCo3– xS4Hollow nanoprisms with enhanced pseudocapacitive properties[J]. Angewandte Chemie International Edition, 2014, 53(14): 3711-3714.
|
25 |
CHEN H C, JIANG J J, ZHANG L, et al. Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors[J]. Nanoscale, 2013, 5(19): 8879-8883.
|
26 |
NIU L Y, WANG Y D, RUAN F P, et al. In situ growth of NiCo2S4@Ni3V2O8 on Ni foam as a binder-free electrode for asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2016, 4(15): 5669-5677.
|
27 |
PAN Q, LIU Y H, ZHAO L J. Co9S8/Mo2S3 nanorods on CoS2 laminar arrays as advanced electrode with superior rate properties and long cycle life for asymmetric supercapacitors[J]. Chemical Engineering Journal, 2018, 351: 603-612.
|
28 |
JIANG G, ZHANG M Y, LI X Q, et al. NiMoO4@Ni(OH)2 core/shell nanorods supported on Ni foam for high-performance supercapacitors[J]. RSC Advances, 2015, 5(85): 69365-69370.
|
29 |
SHINDE S K, RAMESH S, BATHULA C, et al. Novel approach to synthesize NiCo2S4 composite for high-performance supercapacitor application with different molar ratio of Ni and Co[J]. Scientific Reports, 2019, 9(1): 1-10.
|
30 |
李守涛, 孟庆函, 阮一钊, 等. Li(Ni1/3Co1/3Mn1/3)O2/graphite电池在备用电源工况下的交流阻抗[J]. 储能科学与技术, 2019, 8(6): 1171-1175.
|
|
LI S T, MENG Q H, RUAN Y Z, et al. AC Impedance of Li(Ni1/3Co1/3Mn1/3)O2/graphite cell as UPS[J]. Energy Storage Science and Technology, 2019, 8(6): 1171-1175.
|