1 |
LORENZINI G, OLIVEIRA ROCHA L A. Constructal design of Y-shaped assembly of fins[J]. International Journal of Heat and Mass Transfer, 2006, 49(23/24): 4552-4557.
|
2 |
BISERNI C, DALPIAZ F L, FAGUNDES T M, et al. Constructal design of T-shaped morphing fins coupled with a trapezoidal basement: A numerical investigation by means of exhaustive search and genetic algorithm[J]. International Journal of Heat and Mass Transfer, 2017, 109: 73-81.
|
3 |
ALIZADEH M, HOSSEINZADEH K, SHAHAVI M H, et al. Solidification acceleration in a triplex-tube latent heat thermal energy storage system using V-shaped fin and nano-enhanced phase change material[J]. Applied Thermal Engineering, 2019, doi:10.1016/j.applthermaleng.2019.114436.
|
4 |
CHENG H, LUO T, YU J, et al. Experimental study of a shell-and-tube phase change heat exchanger unit with/without circular fins[J]. Energy Procedia, 2018, 152: 990-996.
|
5 |
LORENZINI G, MORETTI S. Numerical analysis on heat removal from Y-shaped fins: Efficiency and volume occupied for a new approach to performance optimisation[J]. International Journal of Thermal Sciences, 2007, 46(6): 573-579.
|
6 |
SHATIKIAN V, ZISKIND G, LETAN R. Numerical investigation of a PCM-based heat sink with internal fins[J]. International Journal of Heat and Mass Transfer, 2005, 48(17): 3689-3706.
|
7 |
YANG X, GUO J, YANG B, et al. Design of non-uniformly distributed annular fins for a shell-and-tube thermal energy storage unit[J]. Applied Energy, 2020, doi:10.1016/j.apenergy.2020.115772.
|
8 |
ALIZADEH M, PAHLAVANIAN M H, TOHIDI M, et al. Solidification expedition of phase change material in a triplex-tube storage unit via novel fins and SWCNT nanoparticles[J]. Journal of Energy Storage, 2020, doi:10.1016/j.est.2019.101188.
|
9 |
LI F, SHEIKHOLESLAMI M, DARA R N, et al. Numerical study for nanofluid behavior inside a storage finned enclosure involving melting process[J]. Journal of Molecular Liquids, 2020, doi:10.1016/j.molliq.2019.111939.
|
10 |
FORNARELLI F, CAMPOREALE S M, FORTUNATO B. Simplified theoretical model to predict the melting time of a shell-and-tube LHTES[J]. Applied Thermal Engineering, 2019, 153: 51-57
|
11 |
LIANG H, NIU J, GAN Y. Performance optimization for shell-and-tube PCM thermal energy storage[J]. Journal of Energy Storage, 2020, doi:10.1016/j.est.2020.101421.
|
12 |
DENG Z, WU S, XU H, et al. Melting heat transfer enhancement of a horizontal latent heat storage unit by fern-fractal fins[J]. Chinese Journal of Chemical Engineering, 2020, 28(11): 2857-2871.
|
13 |
HAJMOHAMMADI M R. Optimal design of tree-shaped inverted fins[J]. International Journal of Heat and Mass Transfer, 2018, 116: 1352-1360.
|
14 |
ZHENG J, WANG J, CHEN T, et al. Solidification performance of heat exchanger with tree-shaped fins[J]. Renewable Energy, 2020, 150: 1098-1107.
|
15 |
LUO X, LIAO S. Numerical study on melting heat transfer in dendritic heat exchangers[J]. Energies, 2018, 11(10): 1-11.
|
16 |
ZHANG C, LI J, CHEN Y. Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins[J]. Applied Energy, 2020, doi:10.1016/j.apenergy.2019.114102.
|
17 |
YU C, WU S, HUANG Y, et al. Charging performance optimization of a latent heat storage unit with fractal tree-like fins[J]. Journal of Energy Storage, 2020, doi:10.1016/j.est.2020.101498.
|
18 |
LUO X, LIAO S. Lattice Boltzmann simulation of tree-shaped fins enhanced melting heat transfer[J]. Numerical Heat Transfer, Part A: Applications, 2018, 74(5): 1228-1243.
|
19 |
NÓBREGA C R E S, ISMAIL K A R, LINO F A M. Solidification around axial finned tube submersed in PCM: Modeling and experiments[J]. Journal of Energy Storage, 2020, doi:10.1016/j.est.2020.101438.
|