储能科学与技术 ›› 2021, Vol. 10 ›› Issue (2): 534-543.doi: 10.19799/j.cnki.2095-4239.2020.0387
收稿日期:
2020-12-01
修回日期:
2020-12-28
出版日期:
2021-03-05
发布日期:
2021-03-05
作者简介:
李红(1989—),女,博士研究生,讲师,研究方向为载运工具运用工程品质控制理论与方法,E-mail:基金资助:
Hong LI(), Jiangwei CHU(), Shufa SUN, He LIU
Received:
2020-12-01
Revised:
2020-12-28
Online:
2021-03-05
Published:
2021-03-05
摘要:
《节能与新能源汽车技术路线(2.0版)》的发布对汽车节能技术提出了新要求,对于传统内燃机汽车,只能通过添加二次能量存储装置实现部分制动能量回收。在几种典型的储能方式中,拉贡特性图表明飞轮储能具有高瞬时功率、高效率、快速响应、环境友好及循环寿命长等优点,从而成为传统内燃机汽车理想的二次储能技术。尽管飞轮储能技术的应用研究已经取得了一些进展,但目前国内外尚未有详细的研究来总结其在汽车工业领域上的应用。文中基于CNKI数据库、Engineering Village数据库及Web of Science 数据库以“飞轮储能”为主题进行了数据检索,重点分析了“飞轮储能”技术在汽车工业方面的研究进展,且检索数据表明,近20年来车用飞轮储能技术虽为小众研究方向,但一直都在探索中。针对电驱动式和机械式两种典型的飞轮混合动力系统,重点关注了机械式飞轮混合动力系统在汽车领域内的探索、研究及验证历程,并详细阐述了该系统的结构特点、研究现状及未来研究趋势。综合分析表明,机械式系统通过飞轮与车辆传动系统间的纯机械连接,不仅解决了电驱动式中因电驱动系统功率限制而造成的动力与节能效果不足问题,还提高了车用飞轮混合动力系统能量转化效率。
中图分类号:
李红, 储江伟, 孙术发, 刘贺. 车用飞轮混合动力系统的应用进展[J]. 储能科学与技术, 2021, 10(2): 534-543.
Hong LI, Jiangwei CHU, Shufa SUN, He LIU. Application progress of flywheel hybrid powertrain in vehicle[J]. Energy Storage Science and Technology, 2021, 10(2): 534-543.
1 | 中华人民共和国国务院国有资产监督管理委员会[EB/OL]. [2020-11-25]. http://www.sasac.gov.cn/n2588025/n2588124/c8492471/content.html.State-owned Assets Supervision Administration Commission of the State Council [EB/OL]. [2020-11-25]. http://www.sasac.gov.cn/n2588025/n2588124/c8492471/content.html. |
2 | 刘振华. 经济政策不确定性下国际原油价格冲击对中国股票市场的影响研究[D]. 徐州: 中国矿业大学, 2019.LIU Zhenghua. Research on the impacts of international crude oil price shocks on China's stock market under economic policy uncertainty [D]. Xuzhou: China University of Mining and Technology, 2019. |
3 | 曹红. 国际原油价格变动对中国股票市场的影响分析[D]. 成都: 西南财经大学, 2014.CAO Hong. The impacts of international crude oil price shocks on Chinese stock market [D]. Chengdu: Southwestern University of Finance and Economics, 2014. |
4 | 中国汽车工程协会. 节能与新能源汽车技术路线(2.0版) [EB/OL]. [2020-11-25]. https://mp.weixin.qq.com/s/yp3Q8hNeKo8z02HODr9r3g.China Society of Automobile Engineers. Energy-saving and new energy automobile technology route (Version 2.0) [EB/OL]. [2020-11-25]. https://mp.weixin.qq.com/s/yp3Q8hNeKo8z02HODr9r3g. |
5 | LAVE L B, MACLEAN H L. An environmental-economic evaluation of hybrid electric vehicles: Toyota's Prius vs. its conventional internal combustion engine Corolla[J]. Transportation Research Part D, 2002, 7(2): 155-162. |
6 | 万良渝. 插电式混合动力乘用车动力总成及控制方案设计[D]. 北京: 清华大学, 2017.WAN Liangyu. Design of powertrain and control scheme of plug-in hybrid passenger car [D]. Bejing: Tsinghua University, 2017. |
7 | ATIENZA A H, CARINO A, JACINTO N. Mechanical interface of flywheel kinetic energy recovery system on motorized tricycles[J]. Journal of Physics: Conference Series, 2020, 1519: 012001. |
8 | ZHANG Pei, YAN Fuwu, DU Changqing. A comprehensive analysis of energy management strategies for hybrid electric vehicles based on bibliometrics[J]. Renewable and Sustainable Energy Review, 2015, 48: 88-104. |
9 | VAN MIERLO J, VAN DEN BOSSCHE P, MAGGTTO G. Models of energy sources for EV and HEV: Fuel cells, batteries, ultracapacitors, flywheels and engine-generators[J]. Journal of Power Sources, 2004, 128(1): 76-89. |
10 | 戴兴建, 魏鲲鹏, 张小章, 等. 飞轮储能技术研究五十年评述[J]. 储能科学与技术, 2018, 7(5): 765-782.DAI Xingjian, WEI Kunpeng, ZHANG Xiaozhang, et al. A review on flywheel energy storage technology in fifty years[J]. Energy Storage Science and Technology, 2018, 7(5): 765-782. |
11 | DHAND A, PULLEN K. Review of flywheel based internal combustion engine hybrid vehicles[J]. International Journal of Automotive Technology, 2013, 14(5): 707-804. |
12 | 《中国公路学报》编辑部. 中国汽车工程学术研究综述·2017[J]. 中国公路学报, 2017, 30(6): 1-197.Editorial Department of China Journal of Highway and Transport. Review on china's automotive engineering research progress: 2017[J]. China Journal of Highway and Transport, 2017, 30(6): 1-197. |
13 | ITANI K, BERNARDINIS A D, KHATIR D, et al. Comparative analysis of two hybrid energy storage systems used in a two front wheel driven electric vehicle during extreme start-up and regenerative braking operations[J]. Energy Conversion and Management, 2017, 144: 69-87. |
14 | HANNAN M A, HOQUE M M, MOHAMED A, et al. Review of energy storage systems for electric vehicle applications: Issues and challenges[J]. Renewable & Sustainable Energy Reviews, 2017, 69: 771-789. |
15 | RUFER A. The dream of efficient energy storage-from BESS, KERS & Co to the hybrid power plant [C]// 19th European Conference on Power Electronics and Applications. Europe: EPE 2017 ECCE, 2017: 1-9. |
16 | THOMAS C, MARTIN W C. Theory of Ragone plots[J]. Journal of Power Sources, 2000, 91(2): 210-216. |
17 | MARTIEZ J. A. Modeling and characterization of energy storage devices [C]// IEEE Power and Energy Society General Meeting. Spain: 2011 IEEE PES General Meeting, 2011: 1-6. |
18 | GUNEY M S, TEPE Y. Classification and assessment of energy storage systems[J]. Renewable & Sustainable Energy Reviews, 2017, 75: 1187-1197. |
19 | HANNAN M A, AZIDIN F A, MOHAMED A. Hybrid electric vehicles and their challenges: A review[J]. Renewable & Sustainable Energy Reviews, 2014, 29: 135-150. |
20 | HANSEN J G R, O'KAIN D. U. An assessment of flywheel high power energy storage technology for hybrid vehicles [R]. Oak Ridge: Oak Ridge National Laboratory, 2012. |
21 | 海科新能源团队. 飞轮混动系统-发展历程[EB/OL]. [2020-11-25]. http://www.chk-net.com/product. asp?id=9.Changzhou Haike New Energy. Milestone [EB/OL]. [2020-11-25]. http://www.chk-net.com/product. asp?id=9. |
22 | BOLUND B, BERNHOFF H, LEIJON M. Flywheel energy and power storage systems[J]. Renewable & Sustainable Energy Reviews, 2007, 11(2): 235-258. |
23 | 张建成, 黄丽培, 陈志业. 飞轮储能系统及其运行控制技术研究[J]. 中国电机工程学报, 2003, 23(3): 108-111.ZHANG Jiancheng, HUANG Lipei, CHEN Zhiye. Research on flywheel energy storage system and its controlling technique[J]. Proceedings of the CSEE, 2003, 23(3): 108-111. |
24 | 张新宾, 储江伟, 李洪亮, 等. 飞轮储能关键技术及其研究现状[J]. 储能科学与技术, 2015, 4(1): 55-60.ZHANG Xinbin, CHU Jiangwei, LI Hongliang, et al. Key technologies of flywheel energy storage systems and current development status[J]. Energy Storage Science and Technology, 2015, 4(1): 55-60. |
25 | 张维煜, 杨恒坤, 朱熀秋. 电动汽车用飞轮电池关键技术和技术瓶颈分析[J]. 中国电机工程学报, 2018, 38(18): 5568-5581.ZHANG Weiyu, YANG Hengkun, ZHU Huangqiu. Key technologies and technical bottleneck analysis of flywheel battery systems for electric vehicle[J]. Proceedings of the CSEE, 2018, 38(18): 5568-5581. |
26 | ERSHAD N F, MEHRJARDI R T, EHSANI M. Electro-mechanical EV powertrain with reduced Volt-Ampere rating[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 224-233. |
27 | ROBERT H, JOSEPH B. Flywheel batteries come around again[J]. IEEE Spectrum, 2002(4): 46-51. |
28 | DIEGO-AYALA U, MARTINEA-GONZALEZ P, MCGLASHAN N. The mechanical hybrid vehicle: an investigation of a flywheel-based vehicular regenerative energy capture system[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2008, 222(D11): 2087-2101. |
29 | 罗祥程. 机械飞轮动能回收系统设计[D]. 哈尔滨: 哈尔滨工程大学, 2015.LUO Xiangcheng. Design on flywheel kinetic energy recovery system [D]. Harbin: Harbin Engineering University, 2015. |
30 | BITTERLY J G. Flywheel technology: Past, present, and 21st century projects[J]. IEEE Aerospace and Electronic Systems Magazine, 1998, 13: 13-16. |
31 | 李洪亮. 车用飞轮储能系统能量转换特性及混合动力控制[D]. 哈尔滨: 东北林业大学, 2018.LI Hongliang. Energy conversion characteristics and hybrid control of flywheel energy storage system for vehicle [D]. Harbin: Northeast Forestry University, 2018. |
32 | GREENWOOD C J. Integration of a commercial vehicle regenerative braking driveline[J]. Institution of Mechanical Engineers Conference Publications, Bath, Engl, 1986: 127-133. |
33 | SERRARENS A F A, SHEN Shuiwen, VELDPAUS F E. Control of a flywheel assisted driveline with continuously variable transmission[J]. Journal of Dynamic Systems Measurement and Control, 2003, 125(3): 455-461. |
34 | 国琛. 基于无级变速器的飞轮助力传动系统研究[D]. 重庆: 重庆大学, 2009.GUO Chen. Research of flywheel assist powertrain based on continuously variable transmission [D]. Chongqing: Chongqing University, 2009. |
35 | SHEN Shuiwen, SERRARENS A F A, STEINBUCH M, et al. Coordinated control of a mechanical hybrid driveline with a continuously variable transmission[J]. JSAE Review, 2001, 22: 453-461. |
36 | SHEN Shuiwen, VROEMEN B, VELDPAUS F. IdleStop and Go: Away to improve fuel economy[J]. Vehicle System Dynamics, International Journal of Vehicle Mechanics and Mobility, 2006, 44(6): 449-476. |
37 | VROEMEN B, SERRARENS A F A, VELDPAUS F. Hierarchical control of the zero inertia powertrain[J]. JSAE Reviews, 2001, 22(4): 519-526. |
38 | BROCKBANK C, GREENWOOD C. Fuel economy benefits of a flywheel and CVT based mechanical hybrid for city bus and commercial vehicle applications[J]. SAE International Journal of Commercial Vehicles, 2010, 2(2): 115-122. |
39 | MCDONOUGH J. System dynamics modeling and development of a design procedure for short-term alternative energy storage systems [D]. The Ohio State University, 2011. |
40 | 动能回收系统[EB/OL]. [2020-11-25]. https://baike.sogou.com/v130447.htm?fromTitle=%E5%8A%A8%E8%83%BD%E5%9B%9E%E6%94%B6%E7%B3%BB%E7%BB%9F.Kinetic energy recovery system [EB/OL]. [2020-11-25]. https://baike.sogou.com/v130447.htm?fromTitle=%E5%8A%A8%E8%83%BD%E5%9B%9E%E6%94%B6%E7%B3%BB%E7%BB%9F. |
41 | Volvo Car Group. Volvo Cars tests of flywheel technology confirm fuel savings of up to 25 percent [EB/OL]. [2020-11-25]. https://www.media.volvocars.com/global /en-gb/media/pressreleases/ 48800. |
42 | 海科新能源团队. "电动式"飞轮混动系统-循环型动能推进系统[EB/OL]. [2020-11-25]. http://www.chk-net.com/product.asp?id=12.Changzhou Haike New Energy. Recycling kinetic energy propulsion system-"electrical type" flywheel KERS [EB/OL]. [2020-11-25]. http://www.chk-net.com/product.asp?id=12. |
[1] | 杨孝杰, 王海云, 蒋中川, 宋章华. 应用于飞轮储能的BLDC电机功率双向流动策略设计[J]. 储能科学与技术, 2022, 11(7): 2233-2240. |
[2] | 高峻泽, 柳亦兵, 周传迪, 何海婷, 武鑫. 飞轮用永磁悬浮轴承的磁路设计及磁力解析模型[J]. 储能科学与技术, 2022, 11(5): 1437-1445. |
[3] | 周勇, 陈香玉, 简霖, 王扶辉, 田德高, 韩传军. 游梁式抽油机飞轮储能系统设计及实验[J]. 储能科学与技术, 2022, 11(2): 593-599. |
[4] | 陈玉龙, 武鑫, 滕伟, 柳亦兵. 用于风电功率平抑的飞轮储能阵列功率协调控制策略[J]. 储能科学与技术, 2022, 11(2): 600-608. |
[5] | 于苏杭, 郭文勇, 滕玉平, 桑文举, 蔡洋, 田晨雨. 飞轮储能轴承结构和控制策略研究综述[J]. 储能科学与技术, 2021, 10(5): 1631-1642. |
[6] | 戴兴建, 胡东旭, 张志来, 陈海生, 朱阳历. 高强合金钢飞轮转子材料结构分析与应用[J]. 储能科学与技术, 2021, 10(5): 1667-1673. |
[7] | 张兴, 阮鹏, 张柳丽, 田刚领, 祝保红. 飞轮储能装置性能测试[J]. 储能科学与技术, 2021, 10(5): 1674-1678. |
[8] | 郭丁彰, 尹钊, 周学志, 徐玉杰, 盛勇, 索文辉, 陈海生. 压缩空气储能系统储气装置研究现状与发展趋势[J]. 储能科学与技术, 2021, 10(5): 1486-1493. |
[9] | 何林轩, 李文艳. 飞轮储能辅助火电机组一次调频过程仿真分析[J]. 储能科学与技术, 2021, 10(5): 1679-1686. |
[10] | 李红, 储江伟, 孙术发, 李宏刚. 车载电磁耦合飞轮储能系统的特性[J]. 储能科学与技术, 2021, 10(5): 1687-1693. |
[11] | 张兴, 阮鹏, 张柳丽, 李娟, 田刚领, 胡东旭, 祝保红. 飞轮储能在华中区域火电调频中的应用分析[J]. 储能科学与技术, 2021, 10(5): 1694-1700. |
[12] | 兰晨, 李文艳. 两种变厚度空心储能飞轮的应力特性[J]. 储能科学与技术, 2021, 10(3): 1080-1087. |
[13] | 祝保红, 李光军, 李树胜, 崔亚东. 基于储能飞轮的油井发电机功率补偿与节能应用[J]. 储能科学与技术, 2021, 10(3): 1088-1094. |
[14] | 张志鸿, 牟俊彦, 孟玉发. 风冷圆柱形锂离子电池系统热失控扩展特性[J]. 储能科学与技术, 2021, 10(2): 658-663. |
[15] | 李汶灿, 吕静亮, 姜新建, 张信真. 基于多模式协调的飞轮储能系统故障穿越控制方法[J]. 储能科学与技术, 2020, 9(6): 1905-1916. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||