储能科学与技术 ›› 2021, Vol. 10 ›› Issue (2): 544-557.doi: 10.19799/j.cnki.2095-4239.2020.0325
王淮斌1,2,3(), 李阳1, 王钦正1, 杜志明3, 冯旭宁2()
收稿日期:
2020-09-21
修回日期:
2020-10-09
出版日期:
2021-03-05
发布日期:
2021-03-05
作者简介:
王淮斌(1986—),男,博士研究生,讲师,主要研究方向为锂离子电池安全,E-mail:基金资助:
Huaibin WANG1,2,3(), Yang LI1, Qinzheng WANG1, Zhiming DU3, Xuning FENG2()
Received:
2020-09-21
Revised:
2020-10-09
Online:
2021-03-05
Published:
2021-03-05
摘要:
电动汽车动力电池的事故致灾机理比较复杂,存在多因素耦合致灾的情况,新类型的失效模式也随着使用过程而逐渐出现。因此,开展电动汽车事故原因调查工作较为困难。本文基于锂离子电池热失控机理,总结了电动汽车事故发生及演化机理,阐明现有研究对电动汽车机械诱因、电诱因、热诱因及内短路触发电池热失控的机理和演化过程的认识程度。基于此,提出了基于车载BMS数据、微观和宏观形变特征、失控后残留物辨识等技术,进一步开展电动汽车事故调查的技术思路。本文对组建电动汽车事故致灾数据库,帮助事故调查人员采用科学有效的方法梳理并建立证据链,揭示事故发生的原因,提升电动汽车灾害事故原因调查效能和行车安全性具有一定的参考价值。
中图分类号:
王淮斌, 李阳, 王钦正, 杜志明, 冯旭宁. 电动汽车事故致灾机理及调查方法[J]. 储能科学与技术, 2021, 10(2): 544-557.
Huaibin WANG, Yang LI, Qinzheng WANG, Zhiming DU, Xuning FENG. Mechanisms causing thermal runaway-related electric vehicle accidents and accident investigation strategies[J]. Energy Storage Science and Technology, 2021, 10(2): 544-557.
1 | 国务院办公厅. 新能源汽车产业发展规划(2021—2035年)[EB/OL]. [2020-11-02]. http://www.gov.cn/zhengce/2020-11/02content_5556716.htm. |
General office of the state council of the People's Republic of China. Development Plan of New Energy Automobile Industry (2021-2035)[EB/OL]//[2020-11-02]. http://www.gov.cn/zhengce/2020-11/02content_5556716.htm. | |
2 | 任东生. 锂离子动力电池全生命周期安全性演变机制与安全管理研究[D]. 北京: 清华大学, 2019. |
REN Dongsheng. Research on safety evolution mechanism of lithium ion power battery and safety management research in full life cycle[D]. Beijing: Tsinghua University, 2019. | |
3 | WANG Huaibin, DU Zhiming, RUI Xinyu, et al. A comparative analysis on thermal runaway behavior of Li(NixCoyMnz)O2 battery with different nickel contents at cell and module level[J]. Journal of Hazardous Materials, 2020, 393: doi: 10.1016/j.jhazmat.2020.122361. |
4 | WANG Qingsong, MAO Binbin, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131. |
5 | RAO Zhonghao, WANG Shuangfeng. A review of power battery thermal energy management[J]. Renewable and Sustainable Energy Reviews, 2011, 15(9): 4554-4571. |
6 | 孙艳霞, 周园, 申月, 等. 动力型锂离子电池富锂三元正极材料研究进展[J]. 化学通报, 2017, 80(1): 34-40. |
SUN Yanxia , ZHOU Yuan, SHEN Yue, et al. Research progress of dynamic lithium ion battery[J]. Chemical Bulletin, 2017, 80(1): 34-40. | |
7 | 瞿波, 张冰, 郑胜男, 等. 四大类锂离子电池正极材料进展[J]. 电源技术, 2016, 40(7): 1515-1518. |
QU Bing, ZHANG Bing, ZHENG Shengnan, et al. Research progress of four major kinds of lithium ion battery[J]. Chinese Journal of Power Sources, 2016, 40(7): 1515-1518. | |
8 | 朱晓庆, 王震坡, WANG Hsin, 等. 锂离子动力电池热失控与安全管理研究综述[J]. 机械工程学报, 2020, 56(14): 91-118. |
ZHU Xiaoqing, WANG Zhenpo, WANG Hsin, et al. Thermal safety of ternary soft pack power lithium battery[J]. Journal of Mechanical Engineering, 2020, 56(14): 91-118. | |
9 | 陈吉清, 刘蒙蒙, 周云郊, 等. 不同滥用条件下车用锂电池安全性实验研究[J]. 汽车工程, 2020, 42(1): 66-73. |
CHEN Jiqing, LIU Mengmeng, ZHOU Yunjiao, et al. Experimental study on safety of automotive NCM battery under different abuse conditions[J]. Automotive Engineering, 2020, 42(1): 66-73. | |
10 | 李首顶, 李艳, 田杰, 等. 锂离子电池电力储能系统消防安全现状分析[J]. 储能科学与技术, 2020, 9(5): 1505-1516. |
LI Shouding, LI Yan, TIAN Jie, et al. Current status and emerging trends in the safety of Li-ion battery[J]. Energy Storage Science and Technology, 2020, 9(5): 1505-1516. | |
11 | FERGUS J W. Recent developments in cathode materials for lithium ion batteries[J]. Journal of Power Sources, 2010, 195(4): 939 |
12 | 王爽, 杜志明, 张泽林. 锂离子电池安全性研究进展[J]. 工程科学学报, 2018, 44(8): 290-291. |
WANG Shuang, DU Zhiming, ZHANG Zelin , et al. Research progress on safety of lithium-ion batteries[J]. Chinese Journal of Engineering, 2018, 44(8): 290-291. | |
13 | 王栋, 郑莉莉, 李希超, 等. 三元软包动力锂电池热安全性[J]. 储能科学与技术, 2020, 9(5): 1517-1525. |
WANG Dong,ZHENG Lili, LI Xichao, et al. Thermal safety of ternary soft pack power lithium battery[J]. Energy Storage Science and Technology, 2020, 9(5): 1517-1525. | |
14 | FENG Xuning, OUYANG Minggao, LIU Xiang, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246. |
15 | 清华大学. 2019动力电池安全性研究报告[R]. 北京: 2019. |
Tsinghua University. 2019 Power battery safety study report[R]. Beijing: 2019. | |
16 | CHEN Mingyi, OUYANG Dongxu, LIU Jiahao, et al. Investigation on thermal and fire propagation behaviors of multiple lithium-ion batteries within the package[J]. Applied Thermal Engineering, 2019, 157: doi: 10.1016/j.applthermaleng.2019.113750. |
17 | FENG Xuning, ZHENG Siqi, REN Dongsheng, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64. |
18 | CHEN Mingyi, YUEN R, WANG Jian. An experimental study about the effect of arrangement on the fire behaviors of lithium-ion batteries[J]. Journal of Thermal Analysis & Calorimetry, 2017, 129: 181-188. |
19 | LIU Xuan, WU Zhibo, STOLIAROV S I, et al. Heat release during thermally-induced failure of a lithium ion battery: Impact of cathode composition[J]. Fire Safety Journal, 2016, 85: 10-22. |
20 | WANG Qingsong, SUN Qiujuan, PING Ping, et al. Heat transfer in the dynamic cycling of lithium-titanate batteries[J]. International Journal of Heat and Mass Transfer, 2016, 93: 896-905. |
21 | LI Weifeng, WANG Hewu, OUYANG Minggao, et al. Theoretical and experimental analysis of the lithium-ion battery thermal runaway process based on the internal combustion engine combustion theory[J]. Energy Conversion and Management, 2019, 185: 211-222. |
22 | HAN Xuebing, LU Languang, ZHENG Yuejiu, et al. A review on the key issues of the lithium ion battery degradation among the whole life cycle[J]. eTransportation, 2019, 1: doi: 10.1016/j.etran.2019.100005. |
23 | 彭波, 罗琼瑶, 张怡, 等. 动力锂离子电池穿刺试验安全性研究[J]. 中国安全科学学报, 2019, 29(3): 27-31. |
PENG Bo, LUO Qiongyao, ZHANG Yi, et al. Study on safety of power Li-ion battery based on puncturing experiments[J]. China Safety Science Journal, 2019, 29(3): 27-31. | |
24 | ZHU Xiaoqing, WANG Hsin, WANG Xue, et al. Internal short circuit and failure mechanisms of lithium-ion pouch cells under mechanical indentation abuse conditions: An experimental study[J]. Journal of Power Sources, 2020, 455: doi: 10.1016/j.jpowsour.2020.227939. |
25 | 罗海灵. 机械滥用下的锂离子软包电池结构失效机理与建模研究[D]. 北京: 清华大学, 2018. |
LUO Hailing. Structural failure mechanism and modelling of lithium-ion battery pouch cell under mechanical abuse[D]. Beijing: Tsinghua University, 2018. | |
26 | ZHU Juner, WIERZBICKI T, LI Wei. A review of safety focused mechanical modeling of commercial lithium-ion batteries[J]. Journal of Power Sources, 2018, 378: 153-168. |
27 | ZHANG Chao, XU Jun, CAO Jun, et al. Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries[J]. Journal of Power Sources, 2017, 357: 126-137. |
28 | ZHANG Chao, SANTHANAGOPALAN S, SPRAGUE M A, et al. Coupled mechanical-electrical-thermal modeling for short-circuit prediction in a lithium-ion cell under mechanical abuse[J]. Journal of Power Sources, 2015, 290: 102-113. |
29 | CHEN Zeyu, XIONG Rui, LU Jiahuan, et al. Temperature rise prediction of lithium-ion battery suffering external short circuit for all-climate electric vehicles application[J]. Applied Energy, 2018, 213: 375-383. |
30 | MCDONALD R C, VANBLARCOM S L, KWASNIK K E. A nanostructured composites thermal switch controls internal and external short circuit in lithium ion batteries[R]. Newton MA (United States): NASA Tech Briefs, 2013: 35. |
31 | MENG Yan, XIA Yong, ZHOU Qing. Identification of true stress-strain curve of thermoplastic polymers under biaxial tension[J]. SAE International Journal of Materials and Manufacturing, 2016, 9(3): doi: 10.4271/2016-01-0514. |
32 | XU Jun, WU Yijing, YIN Yijing. Investigation of effects of design parameters on the internal short-circuit in cylindrical lithium-ion batteries[J]. RSC Advances, 2017, 7(24): 14360-14371. |
33 | 朱晓庆, 王震坡, 王聪, 等. 三元锂离子动力电池过充行为特性实验研究[J]. 汽车工程, 2019, 41(5): 582-560. |
ZHU Xiaoqing, WANG Zhenpo, WANG Cong, et al. An experimental study on overcharge behaviors of lithium-ion power battery with LiNi0.6Co0.2Mn0.2O2 cathode[J]. Automotive Engineering, 2019, 41(5): 582-560. | |
34 | 王铭民, 孙磊, 郭鹏宇, 等. 基于气体在线监测的磷酸铁锂储能电池模组过充热失控特性[J]. 高电压技术,2020, https://doi.org/10.13336/j.1003-6520.hve.20200227004. |
WANG Mingmin, SUN Lei, GUO Pengyu, et al. Overcharge and runaway characteristics of lithium iron phosphate energy storage batterymodules based on gas online monitoring[J]. High Voltage Engineering, 2020, https: //doi.org/10.13336/j.1003-6520.hve. 20200227004. | |
35 | ZHU Xiaoqing, WANG Zhenpo, WANG Yituo, et al. Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: Thermal runaway features and safety management method[J]. Energy, 2019, 169: 868-880. |
36 | OHSAKI T, KISHI T, KUBOKI T, et al. Overcharge reaction of lithium-ion batteries[J]. Journal of Power Sources, 2005, 146(1/2): 97-100. |
37 | ZENG Yuqun, WU Kai, WANG Deyu, et al. Overcharge investigation of lithium-ion polymer batteries[J]. Journal of Power Sources, 2006, 160(2): 1302-1307. |
38 | BELOV D, YANG Mohua. Failure mechanism of Li-ion battery at overcharge conditions[J]. Journal of Solid State Electrochemistry, 2008, 12(7/8): 885-894. |
39 | REN Dongsheng, FENG Xuning, LU Languang, et al. An electrochemical-thermal coupled overcharge-to-thermal-runaway model for lithium ion battery[J]. Journal of Power Sources, 2017, 364: 328-340. |
40 | EROL S, ORAZEM M E, MULLER R P. Influence of overcharge and over-discharge on the impedance response of LiCoO2|C batteries[J]. Journal of Power Sources, 2014, 270: 92-100. |
41 | HE Hao, LIU Yadong, LIU Qi, et al. Failure investigation of LiFePO4 cells in over-discharge conditions[J]. Journal of the Electrochemical Society, 2013, 160(6): A793-A804. |
42 | GUO Rui, LU Languang, OUYANG Minggao, et al. Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries[J]. Scientific Reports, 2016, 6: doi: 10.1038/srep30248. |
43 | BEAUREGARD G P. Report of investigation: hybrids plus plug in hybrid electric vehicle[R]. USA: eTec, 2008. |
44 | 冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京: 清华大学, 2019. |
FENG Xuning. Thermal runaway initiation and propagation of lithium-ion traction battery for electric vehicle: Test, modeling and prevention[D]. Beijing: Tsinghua University, 2016. | |
45 | XIE Xiaoyi, WANG Li, FENG Xuning, et al. High-temperature aging behavior of commercial Li-ion batteries[J]. International Journal of Electrochemical Science, 2020, 15(5): 4586-4591. |
46 | FENG Xuning, REN Dongsheng, HE Xiangming, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. |
47 | CHEN Mingbiao, BAI Fanfei, SONG Wenji, et al. A multilayer electro-thermal model of pouch battery during normal discharge and internal short circuit process[J]. Applied Thermal Engineering, 2017, 120: 506-516. |
48 | SANTHANAGOPALAN S, RAMADASS P, ZHANG Zhengming. Analysis of internal short-circuit in a lithium ion cell[J]. Journal of Power Sources, 2009, 194(1): 550-557. |
49 | 张明轩. 汽车动力电池系统内短路问题研究[D]. 北京: 清华大学, 2018. |
ZHANG Mingxuan. Research on the internal short circuit problem of the vehicle power battery system[D]. Beijing: Tsinghua University, 2018. | |
50 | NAGUIB M, ALLU S, SIMUNOVIC S, et al. Limiting internal short-circuit damage by electrode partition for impact-tolerant Li-ion batteries[J]. Joule, 2018, 2(1): 155-167. |
51 | WANG Hsin, SIMUNOVIC S, MALEKI H, et al. Internal configuration of prismatic lithium-ion cells at the onset of mechanically induced short circuit[J]. Journal of Power Sources, 2016, 306: 424-430. |
52 | LARSSON F, MELLANDER B E. Abuse by external heating, overcharge and short circuiting of commercial lithium-ion battery cells[J]. Journal of the Electrochemical Society, 2014, 161(10): A1611-A1617. |
53 | FENG Xuning, WENG Caihao, OUYANG Minggao, et al. Online internal short circuit detection for a large format lithium ion battery[J]. Applied Energy, 2016, 161: 168-180. |
54 | ZHAO Yang, LIU Peng, WANG Zhenpo, et al. Fault and defect diagnosis of battery for electric vehicles based on big data analysis methods[J]. Applied Energy, 2017, 207: 354-362. |
55 | MA Mina, WANG Yu, DUAN Qiangling, et al. Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis[J]. Energy, 2018, 164: 745-756. |
56 | HONG Jichao, WANG Zhenpo, YAO Yongtao. Fault prognosis of battery system based on accurate voltage abnormity prognosis using long short-term memory neural networks[J]. Applied Energy, 2019, 251: doi: 10.1016/j.apenergy.2019.113381. |
57 | Interim Factual Report[R]. National Transportation Safety Board, USA. http://www.nstb.gov/investigations/2013/boeing_787/interim_report_B787_3-7-13.pdf. |
58 | 方谋, 赵骁, 陈敬波, 等. 从波音787电池事故分析大型动力电池组的安全性[J]. 储能科学与技术, 2014, 3(1): 42-46. |
FANG Mou, ZHAO Xiao, CHEN Jingbo, et al. A case study of Japan airlines B-787 battery fire [J]. Energy Storage Science and Technology, 2014, 3(1): 42-46. | |
59 | PING Ping, WANG Qingsong, HUANG Peifeng, et al. Study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test[J]. Journal of Power Sources, 2015, 285: 80-89. |
60 | HUANG Peifeng, WANG Qingsong, Li Ke, et al. The combustion behavior of large scale lithium titanate battery[J]. Scientific Reports, 2015, 5: doi: 10.1038/srepo7788. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[3] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[4] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[5] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[6] | 武光华, 李宏胜, 李飞, 陈博, 张世科. 考虑时间相关性的电动汽车全生命周期碳排放量预测[J]. 储能科学与技术, 2022, 11(7): 2206-2212. |
[7] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[8] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[9] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[10] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[11] | 于春辉, 何姿颖, 张晨曦, 林贤清, 肖哲熙, 魏飞. 硅基负极与电解液化学反应的分析与抑制策略[J]. 储能科学与技术, 2022, 11(6): 1749-1759. |
[12] | 丁奕, 杨艳, 陈锴, 曾涛, 黄云辉. 锂离子电池智能消防及其研究方法[J]. 储能科学与技术, 2022, 11(6): 1822-1833. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[15] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||