储能科学与技术 ›› 2021, Vol. 10 ›› Issue (6): 2218-2234.doi: 10.19799/j.cnki.2095-4239.2021.0267
吴晓刚1(), 崔智昊1, 孙一钊1, 张锟1, 杜玖玉2()
收稿日期:
2021-06-13
修回日期:
2021-06-20
出版日期:
2021-11-05
发布日期:
2021-11-03
作者简介:
吴晓刚(1981—),男,博士,教授,主要研究方向为电池热电管理,E-mail:基金资助:
Xiaogang WU1(), Zhihao CUI1, Yizhao SUN1, Kun ZHANG1, Jiuyu DU2()
Received:
2021-06-13
Revised:
2021-06-20
Online:
2021-11-05
Published:
2021-11-03
摘要:
为实现“双碳”目标,电动汽车成为了交通工具转型的重要途径。但由于充电速度影响电动汽车用户体验,一定程度上制约了电动汽车的推广应用,为此,发展大功率充电是提升电动汽车市场渗入率的重要技术途径。然而,由于大功率充电带来的动力电池加速老化以及快速产热导致的动力电池组温度分布不一致性等问题,给电动汽车快速充电策略的制定和热管理系统的设计带来了新的挑战。本文从电动汽车大功率充电策略优化和电池组热管理系统设计两个角度,归纳了目前面向电动汽车大功率充电过程的管理技术研究现状。围绕大功率充电方式对动力电池性能的影响,评价了不同充电策略和热管理系统设计方法的优缺点。在此基础上,重点分析了电动汽车大功率充电策略及热管理技术发展中面临的挑战。
中图分类号:
吴晓刚, 崔智昊, 孙一钊, 张锟, 杜玖玉. 电动汽车大功率充电过程动力电池充电策略与热管理技术综述[J]. 储能科学与技术, 2021, 10(6): 2218-2234.
Xiaogang WU, Zhihao CUI, Yizhao SUN, Kun ZHANG, Jiuyu DU. Charging strategy and thermal management technology of power battery in high power charging process of electric vehicle[J]. Energy Storage Science and Technology, 2021, 10(6): 2218-2234.
1 | 于东民, 杨超蒋, 蒋林洳, 等. 电动汽车充电安全防护研究综述[J]. 中国电机工程学报, 2021, 29(1): 1-16. |
YU D M, YANG C J, JIANG L J, et al. Review on safety protection of electric vehicle charging[J]. Proceedings of the Chinese Society for Electrical Engineering, 2021, 29(1): 1-16. | |
2 | 刘云鹏, 李雪, 韩颖慧, 等. 锂离子超级电容器电极材料研究进展[J]. 高电压技术, 2018, 44(4): 1140-1148. |
LIU Y P, LI X, HAN Y H, et al. Research progress in electrode materials for lithium-ion supercapacitor[J]. High Voltage Engineering, 2018, 44(4): 1140-1148. | |
3 | 陈泽宇, 熊瑞, 李世杰, 等. 电动载运工具锂离子电池低温极速加热方法研究[J]. 机械工程学报, 2021, 57(4): 113-120. |
CHEN Z Y, XIONG R, LI S J, et al. Extremely fast heating method of the lithium-ion battery at cold climate for electric vehicle[J]. Journal of Mechanical Engineering, 2021, 57(4): 113-120. | |
4 | 孙方静, 韦连梅, 张家玮, 等. 锂离子电池快充石墨负极材料的研究进展及评价方法[J]. 储能科学与技术, 2017, 6(6): 1223-1230. |
SUN F J, WEI L M, ZHANG J W, et al. Research progress and evaluation methods of lithium-ion battery fast-charge graphite anode material[J]. Energy Storage Science and Technology, 2017, 6(6): 1223-1230. | |
5 | HOWELL D, DUONG T, FAGUY B C P. U.S. DOE vehicle battery R&D: Progress update. Tech. rep. [R]. 2011. |
6 | EVCIPA. Current draft of China's high-power charging technology route[EB/OL].[2017]. http://www.evcipa.org.cn/. |
7 | DU J Y, LIU Y, MO X Y, et al. Impact of high-power charging on the durability and safety of lithium batteries used in long-range battery electric vehicles[J]. Applied Energy, 2019, 255: 113793. |
8 | TESLA. Super Charge[EB/OL]. https://www.tesla.cn/support/supercharging#v3. |
9 | Dongfeng-Nissan. Parameter Configuration for SYLPHY[EB/OL]. https://www.dongfeng-nissan.com.cn/car-configuration-preferences-page?carSeriesId=f33ac8dbc32d451fa8b239b168cfcbee&CarTypeId=238387. |
10 | GACNE. AionS[EB/OL]. https://www.gacne.com.cn/vehicles/aion_s. |
11 | BYD. Introduction to BYD vehicle charging [EB/OL]. http://mall.bydauto.com.cn/pc/attrCompare?id=242&name=%E5%AE%8BPLUS%20EV. |
12 | BMW. The i3 product manuals [EB/OL]. https://www.bmw.com.cn/zh/all-models/bmw-i/ix3/2020/specsheet.html. |
13 | 杨新波, 郑岳久, 高文凯, 等. 基于改进等效电路模型的高比能量储能锂电池系统功率状态估计[J]. 电网技术, 2021, 45(1): 57-66. |
YANG X B, ZHENG Y J, GAO W K, et al. Power state estimation of high specific energy storage lithium battery system based on extended equivalent circuit model[J]. Power System Technology, 2021, 45(1): 57-66. | |
14 | 李超然, 肖飞, 樊亚翔, 等. 一种基于LSTM-RNN的脉冲大倍率工况下锂离子电池仿真建模方法[J]. 中国电机工程学报, 2020, 40(9): 3031-3042. |
LI C R, XIAO F, FAN Y X, et al. An approach to lithium-ion battery simulation modeling under pulsed high rate condition based on LSTM-RNN[J]. Proceedings of the CSEE, 2020, 40(9): 3031-3042. | |
15 | AHMED S, BLOOM I, JANSEN A N, et al. Enabling fast charging-a battery technology gap assessment[J]. Journal of Power Sources, 2017, 367: 250-262. |
16 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 中华人民共和国推荐性国家标准: 电动汽车传导充电用连接装置 第3部分:直流充电接口 GB/T 20234.3—2011[S]. 北京: 中国标准出版社, 2012.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. National Standard (Recommended) of the People's Republic of China: Connection set of conductive charging for electric vehicles—Part 3: DC charging coupler. GB/T 20234.3—2011[S]. Beijing: Standards Press of China, 2012. |
17 | CHAdeMO 2.0[EB/OL].https://www.chademo.com/activities/protocol-development/. |
18 | Electric vehicle and plug in hybrid electric vehicle conductive charge coupler: SAE J1772-2017 [S]. 2017. |
19 | 国家电网. 电动汽车ChaoJi传导充电技术白皮书[R]. 2020.China National Grid. White Paper on ChaoJi Conductive Charging Technology for Electric Vehicles[R]. 2020. |
20 | SHARMA G, SOOD V K, ALAM M S, et al. Comparison of common DC and AC bus architectures for EV fast charging stations and impact on power quality[J]. eTransportation, 2020, 5: 100066. |
21 | MUSSA A S, LIIVAT A, MARZANO F, et al. Fast-charging effects on ageing for energy-optimized automotive LiNi1/3Mn1/3Co1/3O2/graphite prismatic lithium-ion cells[J]. Journal of Power Sources, 2019, 422: 175-184. |
22 | DU J Y, MO X Y, LI Y L, et al. Boundaries of high-power charging for long-range battery electric car from the heat generation perspective[J]. Energy, 2019, 182: 211-223. |
23 | KHAN A B, CHOI W. Optimal charge pattern for the high-performance multistage constant current charge method for the Li-ion batteries[J]. IEEE Transactions on Energy Conversion, 2018, 33(3): 1132-1140. |
24 | LEE C H, CHEN M Y, HSU S H, et al. Implementation of an SOC-based four-stage constant current charger for Li-ion batteries[J]. Journal of Energy Storage, 2018, 18: 528-537. |
25 | JIANG L, LI Y, HUANG Y D, et al. Optimization of multi-stage constant current charging pattern based on Taguchi method for Li-ion battery[J]. Applied Energy, 2020, 259: 114148. |
26 | LI Y J, LI K N, XIE Y, et al. Optimized charging of lithium-ion battery for electric vehicles: Adaptive multistage constant current-constant voltage charging strategy[J]. Renewable Energy, 2020, 146: 2688-2699. |
27 | FASTNED[EB/OL]. https://fastnedcharging.com/en/. |
28 | 陈亚爱, 邱欢, 周京华, 等. 铅酸蓄电池充电控制策略[J]. 电源技术, 2017, 41(4): 654-657. |
CHEN Y A, QIU H, ZHOU J H, et al. Charging control strategy of lead acid battery[J]. Chinese Journal of Power Sources, 2017, 41(4): 654-657. | |
29 | LIN Q, WANG J, XIONG R, et al. Towards a smarter battery management system: A critical review on optimal charging methods of lithium ion batteries[J]. Energy, 2019, 183: 220-234. |
30 | AMANOR-BOADU J M, GUISEPPI-ELIE A, SÁNCHEZ-SINENCIO E. Search for optimal pulse charging parameters for Li-ion polymer batteries using taguchi orthogonal arrays[J]. IEEE Transactions on Industrial Electronics, 2018, 65(11): 8982-8992. |
31 | SONG M, CHOE S Y. Fast and safe charging method suppressing side reaction and lithium deposition reaction in lithium ion battery[J]. Journal of Power Sources, 2019, 436: 226835. |
32 | RENAULT[EB/OL]. https://group.renault.com/. |
33 | HU S D, LIANG Z P, HE X N. Hybrid sinusoidal-pulse charging method for the Li-ion batteries in electric vehicle applications based on AC impedance analysis[J]. Journal of Power Electronics, 2016, 16(1): 268-276. |
34 | CHEN L R, WU S L, SHIEH D T, et al. Sinusoidal-ripple-current charging strategy and optimal charging frequency study for Li-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1): 88-97. |
35 | TOMASZEWSKA A, CHU Z Y, FENG X N, et al. Lithium-ion battery fast charging: A review[J]. eTransportation, 2019, 1: 100011. |
36 | NOTTEN P H L, VELD J H G OP HET, VAN BEEK J R G. Boostcharging Li-ion batteries: A challenging new charging concept[J]. Journal of Power Sources, 2005, 145(1): 89-94. |
37 | KEIL P, JOSSEN A. Charging protocols for lithium-ion batteries and their impact on cycle life—an experimental study with different 18650 high-power cells[J]. Journal of Energy Storage, 2016, 6: 125-141. |
38 | ZHANG C P, JIANG J C, GAO Y, et al. Charging optimization in lithium-ion batteries based on temperature rise and charge time[J]. Applied Energy, 2017, 194: 569-577. |
39 | SUN J L, MA Q, LIU R H, et al. A novel multiobjective charging optimization method of power lithium-ion batteries based on charging time and temperature rise[J]. International Journal of Energy Research, 2019, 43(13): 7672-7681. |
40 | XU M, WANG R, ZHAO P, et al. Fast charging optimization for lithium-ion batteries based on dynamic programming algorithm and electrochemical-thermal-capacity fade coupled model[J]. Journal of Power Sources, 2019, 438: 227015. |
41 | ATTIA P M, GROVER A, JIN N, et al. Closed-loop optimization of fast-charging protocols for batteries with machine learning[J]. Nature, 2020, 578(7795): 397-402. |
42 | GAO Y Z, ZHANG X, CHENG Q Y, et al. Classification and review of the charging strategies for commercial lithium-ion batteries[J]. IEEE Access, 2019, 7: 43511-43524. |
43 | OUYANG Q, CHEN J, ZHENG J, et al. Optimal multiobjective charging for lithium-ion battery packs: A hierarchical control approach[J]. IEEE Transactions on Industrial Informatics, 2018, 14(9): 4243-4253. |
44 | HU X S, LI S B, PENG H E, et al. Charging time and loss optimization for LiNMC and LiFePO4 batteries based on equivalent circuit models[J]. Journal of Power Sources, 2013, 239: 449-457. |
45 | PEREZ H E, HU X S, DEY S, et al. Optimal charging of Li-ion batteries with coupled electro-thermal-aging dynamics[J]. IEEE Transactions on Vehicular Technology, 2017, 66(9): 7761-7770. |
46 | LIN X K, HAO X G, LIU Z Y, et al. Health conscious fast charging of Li-ion batteries via a single particle model with aging mechanisms[J]. Journal of Power Sources, 2018, 400: 305-316. |
47 | STURM J, RHEINFELD A, ZILBERMAN I, et al. Modeling and simulation of inhomogeneities in a 18650 nickel-rich, silicon-graphite lithium-ion cell during fast charging[J]. Journal of Power Sources, 2019, 412: 204-223. |
48 | YIN Y L, HU Y, CHOE S Y, et al. New fast charging method of lithium-ion batteries based on a reduced order electrochemical model considering side reaction[J]. Journal of Power Sources, 2019, 423: 367-379. |
49 | PORSCHE[EB/OL]. https://www.porsche.cn/china/zh/. |
50 | TESLA[EB/OL]. https://www.tesla.com/. |
51 | 朱晓庆, 王震坡, WANG Hsin, 等. 锂离子动力电池热失控与安全管理研究综述[J]. 机械工程学报, 2020, 56(14): 91-118. |
ZHU X Q, WANG Z P, WANG H, et al. Review of thermal runaway and safety management for lithium-ion traction batteries in electric vehicles[J]. Journal of Mechanical Engineering, 2020, 56(14): 91-118. | |
52 | 熊瑞, 马骕骁, 陈泽宇, 等. 锂离子电池极速自加热中的电-热耦合特性及建模[J]. 机械工程学报, 2021, 57(2): 179-189. |
XIONG Rui, MA Suxiao, CHEN Zeyu, et al. Electrochemical thermal coupling characteristics and modeling for lithium-ion battery operating with extremely self-fast heating[J]. Journal of Mechanical Engineering, 2021, 57(2): 179-189. | |
53 | MA S, JIANG M D, TAO P, et al. Temperature effect and thermal impact in lithium-ion batteries: A review[J]. Progress in Natural Science: Materials International, 2018, 28(6): 653-666. |
54 | JAGUEMONT J, BOULON L, DUBÉ Y. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures[J]. Applied Energy, 2016, 164: 99-114. |
55 | ZINTH V, VON LÜDERS C, HOFMANN M, et al. Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction[J]. Journal of Power Sources, 2014, 271: 152-159. |
56 | PETZL M, KASPER M, DANZER M A. Lithium plating in a commercial lithium-ion battery-a low-temperature aging study[J]. Journal of Power Sources, 2015, 275: 799-807. |
57 | GUO Y Z, LUO M J, ZOU J, et al. Temperature characteristics of ternary-material lithium-ion battery for vehicle applications[C]// SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2016. |
58 | KIM J, OH J, LEE H. Review on battery thermal management system for electric vehicles[J]. Applied Thermal Engineering, 2019, 149: 192-212. |
59 | 常修亮, 郑莉莉, 韦守李, 等. 锂离子电池热失控仿真研究进展[J/OL]. 储能科学与技术, 2021, doi: 10.19799/j.cnki.2095-4239.2021.0191. |
CHANG X L, ZHENG L L, WEI S T, et al. Progress in thermal runaway simulation of lithium-ion batteries[J/OL]. Energy Storage Science and Technology, 2021, doi: 10.19799/j.cnki.2095-4239.2021.0191. | |
60 | 王莉, 谢乐琼, 张干, 等. 锂离子电池一致性筛选研究进展[J]. 储能科学与技术, 2018, 7(2): 194-202. |
WANG L, XIE L Q, ZHANG G, et al. Research progress in the consistency screening of Li-ion batteries[J]. Energy Storage Science and Technology, 2018, 7(2): 194-202. | |
61 | XIA G D, CAO L, BI G L. A review on battery thermal management in electric vehicle application[J]. Journal of Power Sources, 2017, 367: 90-105. |
62 | BANDHAUER T M, GARIMELLA S. Passive, internal thermal management system for batteries using microscale liquid-vapor phase change[J]. Applied Thermal Engineering, 2013, 61(2): 756-769. |
63 | XU X M, HE R. Research on the heat dissipation performance of battery pack based on forced air cooling[J]. Journal of Power Sources, 2013, 240: 33-41. |
64 | MAHAMUD R, PARK C. Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity[J]. Journal of Power Sources, 2011, 196(13): 5685-5696. |
65 | SABBAH R, KIZILEL R, SELMAN J R, et al. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution[J]. Journal of Power Sources, 2008, 182(2): 630-638. |
66 | 楼英莺. 混合动力车用镍氢电池散热系统研究[D]. 上海: 上海交通大学, 2007.LOU Y Y. Nickel-metal hydride battery cooling system research for hybrid electric vehicle[D]. Shanghai: Shanghai Jiaotong University, 2007. |
67 | QIAN Z, LI Y M, RAO Z H. Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling[J]. Energy Conversion and Management, 2016, 126: 622-631. |
68 | ALAOUI C, SALAMEH Z M. A novel thermal management for electric and hybrid vehicles[J]. IEEE Transactions on Vehicular Technology, 2005, 54(2): 468-476. |
69 | SAW L H, TAY A A O, ZHANG L W. Thermal management of lithium-ion battery pack with liquid cooling[C]// 2015 31st Thermal Measurement, Modeling & Management Symposium (SEMI-THERM). USA. IEEE, 2015: 298-302. |
70 | PANCHAL S, KHASOW R, DINCER I, et al. Thermal design and simulation of mini-channel cold plate for water cooled large sized prismatic lithium-ion battery[J]. Applied Thermal Engineering, 2017, 122: 80-90. |
71 | JIN L W, LEE P S, KONG X X, et al. Ultra-thin minichannel LCP for EV battery thermal management[J]. Applied Energy, 2014, 113: 1786-1794. |
72 | HO T, KIM Y. Design of direct and indirect liquid cooling systems for high- capacity, high-power lithium-ion battery packs[J]. SAE International Journal of Alternative Powertrains, 2012, 1(2): 525-536. |
73 | JARRETT A, KIM I Y. Influence of operating conditions on the optimum design of electric vehicle battery cooling plates[J]. Journal of Power Sources, 2014, 245: 644-655. |
74 | HUO Y T, RAO Z H, LIU X J, et al. Investigation of power battery thermal management by using mini-channel cold plate[J]. Energy Conversion and Management, 2015, 89: 387-395. |
75 | WANG C, ZHANG G Q, MENG L K, et al. Liquid cooling based on thermal silica plate for battery thermal management system[J]. International Journal of Energy Research, 2017, 41(15): 2468-2479. |
76 | ZHOU H B, ZHOU F, ZHANG Q, et al. Thermal management of cylindrical lithium-ion battery based on a liquid cooling method with half-helical duct[J]. Applied Thermal Engineering, 2019, 162: 114257. |
77 | RUGH J P, PESARAN A, SMITH K. Electric vehicle battery thermal issues and thermal management techniques[R]. National Renewable Energy Laboratory, 2011. |
78 | RAO Z H, WANG S F. A review of power battery thermal energy management[J]. Renewable and Sustainable Energy Reviews, 2011, 15(9): 4554-4571. |
79 | HÉMERY C V, PRA F, ROBIN J F, et al. Experimental performances of a battery thermal management system using a phase change material[J]. Journal of Power Sources, 2014, 270: 349-358. |
80 | RAO Z H, WANG S F, ZHANG Y L. Thermal management with phase change material for a power battery under cold temperatures[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2014, 36(20): 2287-2295. |
81 | LING Z Y, WANG F X, FANG X M, et al. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling[J]. Applied Energy, 2015, 148: 403-409. |
82 | RAO Z H, WANG Q C, HUANG C L. Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system[J]. Applied Energy, 2016, 164: 659-669. |
83 | JAGUEMONT J, OMAR N, VAN DEN BOSSCHE P, et al. Phase-change materials (PCM) for automotive applications: a review[J]. Applied Thermal Engineering, 2018, 132: 308-320. |
84 | 周智程, 魏爱博, 屈健, 等. 管板结构脉动热管冷却动力电池的传热特性[J]. 化工进展, 2020, 39(10): 3916-3925. |
ZHOU Z C, WEI A B, QU J, et al. Heat transfer characteristics of oscillating heat pipe and its application in power battery cooling[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 3916-3925. | |
85 | 焦波. 板式脉动热管的实验与应用研究进展[J]. 化工进展, 2014, 33(9): 2252-2259,2265. |
JIAO B. Advances in the experimental investigations and applications of flat-plate pulsating heat pipe[J]. Chemical Industry and Engineering Progress, 2014, 33(9): 2252-2259,2265. | |
86 | YE Y H, SHI Y X, SAW L H, et al. Performance assessment and optimization of a heat pipe thermal management system for fast charging lithium ion battery packs[J]. International Journal of Heat and Mass Transfer, 2016, 92: 893-903. |
87 | ZHAO R, GU J J, LIU J. An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries[J]. Journal of Power Sources, 2015, 273: 1089-1097. |
88 | WANG Q, JIANG B, XUE Q F, et al. Experimental investigation on EV battery cooling and heating by heat pipes[J]. Applied Thermal Engineering, 2015, 88: 54-60. |
[1] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[2] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[3] | 武光华, 李宏胜, 李飞, 陈博, 张世科. 考虑时间相关性的电动汽车全生命周期碳排放量预测[J]. 储能科学与技术, 2022, 11(7): 2206-2212. |
[4] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[5] | 冯锦新, 凌子夜, 方晓明, 张正国. 相变乳液的研究进展[J]. 储能科学与技术, 2022, 11(6): 1968-1979. |
[6] | 柯巧敏, 郭剑, 王亦伟, 曹文炅, 陈满, 蒋方明. 液冷式热管理对动力电池热失控阻隔性能[J]. 储能科学与技术, 2022, 11(5): 1634-1640. |
[7] | 张岩, 韩伟, 宋闯, 杨双义. 含电动汽车的光储充一体化电站设施规划与运行联合优化[J]. 储能科学与技术, 2022, 11(5): 1502-1511. |
[8] | 王军, 阮琳, 邱彦靓. 锂离子电池低温快速加热方法研究进展[J]. 储能科学与技术, 2022, 11(5): 1563-1574. |
[9] | 杜江龙, 林伊婷, 杨雯棋, 练成, 刘洪来. 模拟仿真在锂离子电池热安全设计中的应用[J]. 储能科学与技术, 2022, 11(3): 866-877. |
[10] | 安治国, 张显, 祝惠, 张春杰. 蜂窝状CPCM/水冷复合式圆柱型锂电池散热性能[J]. 储能科学与技术, 2022, 11(1): 211-220. |
[11] | 张晓光, 潘晓楠, 李金铭, 刘丽, 何燕. 电池排布对锂电池组相变热管理性能的影响[J]. 储能科学与技术, 2022, 11(1): 127-135. |
[12] | 朱信龙, 王均毅, 潘加爽, 康传智, 邹燚涛, 杨凯杰, 施红. 集装箱储能系统热管理系统的现状及发展[J]. 储能科学与技术, 2022, 11(1): 107-118. |
[13] | 许国良, 张玉洁, 黄晓明, 何锐. 基于临界换热系数与干预时间的车用锂电池热设计及运行策略[J]. 储能科学与技术, 2021, 10(6): 2252-2259. |
[14] | 刘霏霏, 鲍荣清, 程贤福, 李骏, 秦武, 杨超峰. 服役工况下车用锂离子动力电池散热方法综述[J]. 储能科学与技术, 2021, 10(6): 2269-2282. |
[15] | 刘偲艳, 胡毕华. 氢燃料汽车双向DC-DC变换器改进模型预测控制[J]. 储能科学与技术, 2021, 10(6): 2046-2052. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||