1 |
ZHAO E W, LIU T, JÓNSSON E, et al. In situ NMR metrology reveals reaction mechanisms in redox flow batteries[J]. Nature, 2020, 579(7798): 224-228.
|
2 |
范兴明, 王超, 张鑫, 等. 基于增量学习相关向量机的锂离子电池SOC预测方法[J]. 电工技术学报, 2019, 34(13): 2700-2708.
|
|
FAN X M, WANG C, ZHANG X, et al. A prediction method of Li-ion batteries SOC based on incremental learning relevance vector machine[J]. Transactions of China Electrotechnical Society, 2019, 34(13): 2700-2708.
|
3 |
陈翌, 白云飞, 何瑛. 数据驱动的锂电池健康状态估算方法比较[J]. 储能科学与技术, 2019, 8(6): 1204-1210.
|
|
CHEN Y, BAI Y F, HE Y. Comparison of data-driven lithium battery state of health estimation methods[J]. Energy Storage Science and Technology, 2019, 8(6): 1204-1210.
|
4 |
黄凯, 郭永芳, 李志刚. 基于信息反馈粒子群的高精度锂离子电池模型参数辨识[J]. 电工技术学报, 2019, 34(S1): 378-387.
|
|
HUANG K, GUO Y F, LI Z G. High precision parameter identification of lithium-ion battery model based on feedback particle swarm optimization algorithm[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 378-387.
|
5 |
张卓识. 锂离子电池建模与故障预测方法研究[D]. 大连: 大连海事大学, 2016.
|
|
ZHANG Z S. Study of lithium-ion battery modeling and prognostics method[D]. Dalian: Dalian Maritime University, 2016.
|
6 |
凡旭国. 锂离子电池组等效电路建模及SOC估算的研究[D]. 绵阳: 西南科技大学, 2017.
|
|
FAN X G. Research on equivalent circuit modeling and state of charge estimation of lithium-ion battery[D]. Mianyang: Southwest University of Science and Technology, 2017.
|
7 |
杨帆, 乔艳龙, 甘德刚, 等. 不同充电模式对锂离子电池极化特性影响[J]. 电工技术学报, 2017, 32(12): 171-178.
|
|
YANG F, QIAO Y L, GAN D G, et al. Lithium-ion battery polarization characteristics at different charging modes[J]. Transactions of China Electrotechnical Society, 2017, 32(12): 171-178.
|
8 |
郑志坤, 赵光金, 金阳, 等. 基于库仑效率的退役锂离子动力电池储能梯次利用筛选[J]. 电工技术学报, 2019, 34(S1): 388-395.
|
|
ZHENG Z K, ZHAO G J, JIN Y, et al. The reutilization screening of retired electric vehicle lithium-ion battery based on coulombic efficiency[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 388-395.
|
9 |
郑继利. 基于机理模型的锂离子电池电化学行为及优化研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
|
|
ZHENG J L. Research on electrochemical performance and optimization of lithium ion batterries based on the mechanism model[D]. Harbin: Harbin Institute of Technology, 2018.
|
10 |
LUZI M, PASCHERO M, RIZZI A, et al. A novel neural networks ensemble approach for modeling electrochemical cells[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(2): 343-354.
|
11 |
HUSSEIN A A. Adaptive artificial neural network-based models for instantaneous power estimation enhancement in electric vehicles' Li-ion batteries[J]. IEEE Transactions on Industry Applications, 2019, 55(1): 840-849.
|
12 |
CHEMALI E, KOLLMEYER P J, PREINDL M, et al. State-of-charge estimation of Li-ion batteries using deep neural networks: A machine learning approach[J]. Journal of Power Sources, 2018, 400: 242-255.
|
13 |
DAI H D, ZHAO G C, LIN M Q, et al. A novel estimation method for the state of health of lithium-ion battery using prior knowledge-based neural network and Markov chain[J]. IEEE Transactions on Industrial Electronics, 2019, 66(10): 7706-7716.
|
14 |
LI W H, JIAO Z P, DU L, et al. An indirect RUL prognosis for lithium-ion battery under vibration stress using Elman neural network[J]. International Journal of Hydrogen Energy, 2019, 44(23): 12270-12276.
|
15 |
SHEN S, SADOUGHI M, CHEN X Y, et al. A deep learning method for online capacity estimation of lithium-ion batteries[J]. Journal of Energy Storage, 2019, 25: doi: 10.1016/j.est.2019. 100817.
|
16 |
ZHAO R X, KOLLMEYER P J, LORENZ R D, et al. A compact methodology via a recurrent neural network for accurate equivalent circuit type modeling of lithium-ion batteries[J]. IEEE Transactions on Industry Applications, 2019, 55(2): 1922-1931.
|
17 |
李超然, 肖飞, 樊亚翔. 基于循环神经网络的锂电池SOC估算方法[J]. 海军工程大学学报, 2019, 31(6): 107-112.
|
|
LI C R, XIAO F, FAN Y X. Approach to lithium battery SOC estimation based on recurrent neural network[J]. Journal of Naval University of Engineering, 2019, 31(6): 107-112.
|
18 |
WU Z Q, SHANG M Y, SHEN D D, et al. SOC estimation for batteries using MS-AUKF and neural network[J]. Journal of Renewable and Sustainable Energy, 2019, 11(2): doi: 10.1063/1.5064479.
|
19 |
TONG S J, LACAP J H, PARK J W. Battery state of charge estimation using a load-classifying neural network[J]. Journal of Energy Storage, 2016, 7: 236-243.
|
20 |
BIAN C, HE H L, YANG S K, et al. State-of-charge sequence estimation of lithium-ion battery based on bidirectional long short-term memory encoder-decoder architecture[J]. Journal of Power Sources, 2020, 449: doi: 10.1016/j.jpowsour.2019.227558.
|
21 |
ZHANG Y Z, XIONG R, HE H W, et al. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5695-5705.
|
22 |
LIU V T, SUN Y K, LU H Y, et al. State of charge estimation for lithium-ion battery using recurrent neural network[C]//2018 IEEE International Conference on Advanced Manufacturing (ICAM), 2018: 376-379.
|
23 |
赵明愿. 新型时间序列复杂网络建网及在风序列分析中的应用研究[D]. 天津: 天津大学, 2017.
|
|
ZHAO M Y. Time series analysis based on complex network and application research in wind records[D]. Tianjin: Tianjin University, 2017.
|
24 |
刘琴, 王恺乐, 饶卫雄. 不等长时间序列滑窗STS距离聚类算法[J]. 计算机科学与探索, 2015, 9(11): 1301-1313.
|
|
LIU Q, WANG K L, RAO W X. Non-equal time series clustering algorithm with sliding window STS distance[J]. Journal of Frontiers of Computer Science and Technology, 2015, 9(11): 1301-1313.
|
25 |
黄喆. 基于RBF神经网络的上证指数预测研究[D]. 合肥: 中国科学技术大学, 2009.
|
|
HUANG Z. Prediction of Shanghai stock exchange composite index based on RBF neural network[D]. Hefei: University of Science and Technology of China, 2009.
|
26 |
艾虎, 李菲. 基于改进的长短期记忆神经网络方言辨识模型[J]. 科学技术与工程, 2019, 19(2): 163-169.
|
|
AI H, LI F. Dialect identification model based on improved long short-term memory neural network[J]. Science Technology and Engineering, 2019, 19(2): 163-169.
|