1 |
GUO T Z, ZHOU D, LIU W F, et al. Recent advances in all-in-one flexible supercapacitors[J]. Science China Materials, 2021, 64(1): 27-45.
|
2 |
WANG F X, WU X W, YUAN X H, et al. Latest advances in supercapacitors: from new electrode materials to novel device designs[J]. Chemical Society Reviews, 2017, 46(22): 6816-6854.
|
3 |
ABDOLHOSSEINZADEH S, HEIER J, ZHANG C F. Coating porous MXene films with tunable porosity for high-performance solid-state supercapacitors[J]. Chemelectrochem, 2021, 8(10): 1911-1917.
|
4 |
ABDOLHOSSEINZADEH S, HEIER J, ZHANG C F. Printing and coating MXenes for electrochemical energy storage devices[J]. Journal of Physics-Energy. 2020, 2(3): doi: 10.1088/2515-7655/aba47d.
|
5 |
ZHANG C F. Interfacial assembly of two-dimensional MXenes[J]. Journal of Energy Chemistry, 2021, 60: 417-434.
|
6 |
Li N, PENG J H, ONG W J, et al. MXenes: An emerging platform for wearable electronics and looking beyond[J]. Matter, 2021, 4(2): 377-407.
|
7 |
KARAHAN H E, GOH K, ZHANG C F, et al. MXene materials for designing advanced separation membranes[J]. Advanced Materials, 2020, 32(29): doi: 10.1002/adma.201906697.
|
8 |
VAHIDMOHAMMADI A, ROSEN J, GOGOTSI Y. The world of two-dimensional carbides and nitrides (MXenes)[J]. Science, 2021, 372(6547): 1165.
|
9 |
ABDOLHOSSEINZADEH S, SCHNEIDER R, VERMA A, et al. Turning trash into treasure: additive free MXene sediment inks for screen-printed micro-supercapacitors[J]. Advanced Materials, 2020, 32(17): doi: 10.1002/adma.202000716.
|
10 |
DING L, Li L B, LIU Y C, et al. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater[J]. Nature Sustainability. 2020, 3(4): 296-302.
|
11 |
LUO Y, CHEN G-F, DING L, et al. Efficient electrocatalytic N2 fixation with MXene under ambient conditions[J]. Joule, 2019, 3(1): 279-289.
|
12 |
CHENG Y, MA Y, LI L, et al. Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor[J], ACS Nano, 2020, 14(2): 2145-2155.
|
13 |
LIU J, ZHANG H B, SUN R, et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding[J]. Advanced Materials, 2017, 29(38): doi: 10.1002/adma.201702367.
|
14 |
HUANG R K, CHEN X, DONG Y Q, et al. MXene composite nanofibers for cell culture and tissue engineering[J]. ACS Applied Bio Materials, 2020, 3(4): 2125-2131.
|
15 |
LUKATSKAYA M R, KOTA S, LIN Z F, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides[J]. Nature Energy, 2017, 2(8): 17105.
|
16 |
LIN H, WANG X G, YU L D, et al. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion[J]. Nano Letters, 2017, 17(1): 384-391.
|
17 |
吕通, 张恩爽, 原因, 等. 大片单层低缺陷MXene的制备及其膜材料的电磁屏蔽性能[J]. 高等学校化学学报, 2019, 40(10): 2059-2066.
|
|
LYU T, ZHANG E S, YUAN Y, et al. Preparation of large-size single layer MXene with low defect and electromagnetic shielding performance of MXene film[J]. Chemical Journal of Chinese Universities, 2019, 40(10): 2059-2066.
|
18 |
GUO T Z, FU M S, ZHOU D, et al. Flexible Ti3C2Tx/graphene films with large-sized flakes for supercapacitors[J]. Small Structures, 2021, 2(7): doi: 10.1002/sstr.202100015.
|
19 |
SHAO H, XU K, WU Y C, et al. Unraveling the charge storage mechanism of Ti3C2Tx MXene electrode in acidic electrolyte[J]. ACS Energy Letters, 2020, 5(9): 2873-2880.
|
20 |
ABDOLHOSSEINZADEH S, JIANG X T, ZHANG H, et al. Perspectives on solution processing of two-dimensional MXenes[J]. Materials Today, 2021, 48: 214-240.
|
21 |
XIA J X, YANG S Z, WANG B, et al. Boosting electrosynthesis of ammonia on surface-engineered MXene Ti3C2[J]. Nano Energy, 2020, 72: doi: 10.1016/j.nanoen.2020.104681.
|
22 |
JIA G W, ZHENG A, WANG X, et al. Flexible, biocompatible and highly conductive MXene-graphene oxide film for smart actuator and humidity sensor[J]. Sensors and Actuators B: Chemical, 2021, 346: doi: 10.1016/j.snb.2021.130507.
|
23 |
IQBAL A, HONG J, KO T Y, et al. Improving oxidation stability of 2D MXenes: synthesis, storage media, and conditions[J]. Nano Convergence, 2021, 8(1): 9.
|
24 |
DOO S, CHAE A, KIM D, et al. Mechanism and kinetics of oxidation reaction of aqueous Ti3C2Tx suspensions at different pHs and temperatures[J]. ACS applied materials & interfaces, 2021, 13(19): 22855-22865.
|
25 |
ZHANG J Z, KONG N, HEGH D, et al. Freezing titanium carbide aqueous dispersions for ultra-long-term storage[J]. ACS Applied Materials & Interfaces, 2020, 12(30): 34032-34040.
|
26 |
ZHANG C J, PINILLA S, MCEVOY N, et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes)[J]. Chemistry of Materials, 2017, 29(11): 4848-4856.
|
27 |
HUANG S H, MOCHALIN V N. Hydrolysis of 2D transition-metal carbides (MXenes) in colloidal solutions[J]. Inorganic Chemistry, 2019, 58(3): 1958-1966.
|
28 |
HABIB T, ZHAO X F, SHAH S A, et al. Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films[J]. npj 2D Materials and Applications, 2019, 3(1): 8.
|
29 |
唐俊. 二维Ti3C2Tx纳米结构调控及其对电化学性能的影响[D]. 北京: 北京大学, 2020.TANG J. Tuning the nanostructure of Ti3C2Tx MXene for optimization of the electrochemical performance[D]. Beijing: Peking University, 2020.
|
30 |
TANG J, MATHIS T S, KURRA N, et al. Tuning the electrochemical performance of titanium carbide MXene by controllable in situ anodic oxidation[J]. Angewandte Chemie-International Edition, 2019, 58(49): 17849-17855.
|
31 |
WU C-W, UNNIKRISHNAN B, CHEN I W P, et al. Excellent oxidation resistive MXene aqueous ink for micro-supercapacitor application[J]. Energy Storage Materials, 2020, 25: 563-571.
|
32 |
ZHAO X F, VASHISTH A, BLIVIN J W, et al. pH, nanosheet concentration, and antioxidant affect the oxidation of Ti3C2Tx and Ti2CTx MXene dispersions[J]. Advanced Materials Interfaces, 2020, 7(20): doi: 10.1002/admi.202000845.
|
33 |
SHUCK C E, HAN M K, MALESKI K, et al. Effect of Ti3AlC2 MAX phase on structure and properties of resultant Ti3C2Tx MXene[J]. ACS Applied Nano Materials, 2019, 2(6): 3368-3376.
|
34 |
MATHIS T S, MALESKI K, GOAD A, et al. Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene[J]. ACS Nano, 2021, 15(4): 6420-6429.
|
35 |
SANG X H, XIE Y, LIN M W, et al. Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene[J]. ACS Nano, 2016, 10(10): 9193-9200.
|
36 |
SARYCHEVA A, GOGOTSI Y. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene[J]. Chemistry of Materials, 2020, 32(8): 3480-3488.
|
37 |
SHI Y C, LIU Y. Vacancy and N dopants facilitated Ti3+ sites activity in 3D Ti3- xC2Ty MXene for electrochemical nitrogen fixation[J]. Applied Catalysis B: Environmental, 2021, 297: doi: 10.1016/j.apcatb.2021.120482.
|
38 |
LUKATSKAYA M R, BAK S M, YU X Q, et al. Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy[J]. Advanced Energy Materials, 2015, 5(15): doi: 10.1002/aenm.201500589.
|
39 |
ALHABEB M, MALESKI K, ANASORI B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)[J]. Chemistry of Materials, 2017, 29(18): 7633-7644.
|
40 |
SHI H H, ZHANG P P, LIU Z C, et al. Ambient-stable two-dimensional titanium carbide (MXene) enabled by iodine etching[J]. Angewandte Chemie-International Edition, 2021, 60(16): 8689-8693.
|
41 |
HE P, WANG X X, CAI Y Z, et al. Tailoring Ti3C2Tx nanosheets to tune local conductive network as an environmentally friendly material for highly efficient electromagnetic interference shielding[J]. Nanoscale, 2019, 11(13): 6080-6088.
|
42 |
李雪松. 二维晶体MXene (Ti3C2Tx)环境不稳定性的研究[D]. 济南: 山东大学, 2021.LI X S. Study on environmental instability of two-dimensional crystal MXene (Ti3C2Tx) [D]. Ji'nan: Shandong university, 2021.
|
43 |
NATU V, HART J L, SOKOL M, et al. Edge capping of 2D-MXene sheets with polyanionic salts to mitigate oxidation in aqueous colloidal suspensions[J]. Angewandte Chemie-International Edition, 2019, 58(36): 12655-12660.
|
44 |
ZHAO X F, VASHISTH A, PREHN E, et al. Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions[J]. Matter, 2019, 1(2): 513-526.
|
45 |
LI J B, QIN R Z, YAN L, et al. Plasmonic light illumination creates a channel to achieve fast degradation of Ti3C2Tx nanosheets[J]. Inorganic Chemistry, 2019, 58(11): 7285-7294.
|
46 |
JI J J, ZHAO L F, SHEN Y F, et al. Covalent stabilization and functionalization of MXene via silylation reactions with improved surface properties[J]. FlatChem, 2019, 17: doi: 10.1016/j.flatc.2019.100128.
|
47 |
YANG W Z, HUANG B Y, LI L B, et al. Covalently sandwiching MXene by conjugated microporous polymers with excellent stability for supercapacitors[J]. Small Methods, 2020, 4(10): doi: 10.1002/smtd.202000434.
|
48 |
SEYEDIN S, ZHANG J Z, USMAN K A S, et al. Facile solution processing of stable MXene dispersions towards conductive composite fibers[J]. Global Challenges, 2019, 3(10): doi: 10.1002/gchz.201900037.
|
49 |
SATO T, HAMADA Y, SUMIKAWA M, et al. Solubility of oxygen in organic solvents and calculation of the Hansen solubility parameters of oxygen[J]. Industrial and Engineering Chemistry Research, 2014, 53(49): 19331-19337.
|
50 |
CHAE Y, KIM S J, CHO S Y, et al. An investigation into the factors governing the oxidation of two-dimensional Ti3C2 MXene[J]. Nanoscale, 2019, 11(17): 8387-8393.
|
51 |
MALESKI K, MOCHALIN V N, GOGOTSI Y. Dispersions of two-dimensional titanium carbide MXene in organic solvents[J]. Chemistry of Materials, 2017, 29(4): 1632-1640.
|
52 |
ZHANG Q X, LAI H R, FAN R Z, et al. High concentration of Ti3C2Tx MXene in organic solvent[J]. ACS Nano, 2021, 15(3): 5249-5262.
|
53 |
LUO Y Y, YANG C H, TIAN Y P, et al. A long cycle life asymmetric supercapacitor based on advanced nickel-sulfide/titanium carbide (MXene) nanohybrid and MXene electrodes[J]. Journal of Power Sources, 2020, 450: doi: 10.1016/j.jpowsour.2019.227694.
|