储能科学与技术 ›› 2022, Vol. 11 ›› Issue (4): 1264-1277.doi: 10.19799/j.cnki.2095-4239.2022.0108

• 国际优秀储能青年科学家专刊 • 上一篇    下一篇

限域型贵金属氧还原反应电催化剂研究进展

胡冶州1(), 王双2, 申涛2, 朱叶1(), 王得丽2()   

  1. 1.香港理工大学应用物理系,香港 999077
    2.能量转换与存储材料化学教育部重点实验室,华中科技大学化学与化工学院,湖北 武汉 430074
  • 收稿日期:2022-03-01 修回日期:2022-03-23 出版日期:2022-04-05 发布日期:2022-04-11
  • 通讯作者: 朱叶,王得丽 E-mail:huyezhou@163.com;yezhu@polyu.edu.hk;wangdl81125@ hust.edu.cn
  • 作者简介:胡冶州(1996—),男,博士研究生,从事能量转换材料设计研究,E-mail:huyezhou@163.com
  • 基金资助:
    The Hong Kong Polytechnic University grant;国家自然科学基金项目(91963109)

Recent progress in confined noble-metal electrocatalysts for oxygen reduction reaction

Yezhou HU1(), Shuang WANG2, Tao SHEN2, Ye ZHU1(), Deli WANG2()   

  1. 1.Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, China
    2.Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • Received:2022-03-01 Revised:2022-03-23 Online:2022-04-05 Published:2022-04-11
  • Contact: Ye ZHU,Deli WANG E-mail:huyezhou@163.com;yezhu@polyu.edu.hk;wangdl81125@ hust.edu.cn

摘要:

开发高效的氧还原反应电催化剂是实现质子交换膜燃料电池规模化应用的关键技术之一。目前常用的贵金属催化剂成本较高,并且稳定性仍需改善。物理限域是改善催化剂稳定性的有效策略,在不影响贵金属催化剂催化活性的前提下,物理限域层不仅可以抑制催化剂的烧结,还能够减少催化剂在反应过程中的团聚、脱落以及溶解等问题,从而提升催化剂的寿命。本文回顾了近年来用于电催化氧还原反应的限域型贵金属催化剂,主要包括导电聚合物限域、非金属氧化物限域、金属氧化物限域以及碳层限域的贵金属催化剂。根据限域层制备策略不同,重点分析了限域层的孔结构、导电性、致密性、抗腐蚀性与催化剂性能之间的构效关系。着重介绍了实现碳层限域的三种策略,包括“沉积-转化”、“嵌入-转化”以及“一步热解”。分析表明,通过构筑具有丰富孔结构、高导电性及合适厚度的限域层能够在保证活性的同时显著提升催化剂稳定性。最后对全文进行了总结并对当前存在的问题进行了整理,同时对未来限域型催化剂的发展进行了展望。

关键词: 质子交换膜燃料电池, 氧还原反应, 限域型贵金属催化剂, 物理限域层, 电催化稳定性

Abstract:

Developing highly efficient oxygen reduction reaction (ORR) electrocatalysts is one of the main techniques to achieve the large-scale application of proton exchange membrane fuel cells (PEMFCs). Noble-metal based catalysts, as robust ORR catalysts, are the most likely candidates for practical application. The large-scale use of noble metal may lead to a high cost of the catalysts. On the other hand, the stabilities of noble-metal catalysts still need further improvements. Confining noble-metal catalysts in physical confinement layer can greatly improve catalytic stability without compromising initial activity, thus prolonging the service life of catalysts. The physical confinement layers can not only inhibit the coalescence of catalysts during high-temperature preparation, but also mitigate the aggregation, detachment and dissolution during electrochemical process. In this review, confined noble-metal ORR catalysts are reviewed, including conducting polymer confined noble-metal catalysts, non-metal-oxide confined noble-metal catalysts, metal-oxides confined catalysts and carbon confined catalysts. Besides, the structure-performance relationship between confinement layers' physical properties and electrocatalytic performance is analyzed. Three main strategies to achieve carbon confinement are emphasized, including 'deposition-conversion' strategy, 'insertion-conversion' strategy and 'one-step pyrolysis' strategy. At last, summary and prospect are given, also some existing challenges are stated.

Key words: proton exchange membrane fuel cells, oxygen reduction reaction, confined noble-metal based electrocatalysts, physical confinement layer, electrocatalytic stability

中图分类号: