1 |
SHEN Z W, RITTER M. Forecasting volatility of wind power production[J]. Applied Energy, 2016, 176: 295-308.
|
2 |
ZHANG H L, BAEYENS J, CÁCERES G, et al. Thermal energy storage: Recent developments and practical aspects[J]. Progress in Energy and Combustion Science, 2016, 53: 1-40.
|
3 |
NAZIR H, BATOOL M, BOLIVAR OSORIO F J, et al. Recent developments in phase change materials for energy storage applications: A review[J]. International Journal of Heat and Mass Transfer, 2019, 129: 491-523.
|
4 |
ALVA G, LIN Y X, FANG G Y. An overview of thermal energy storage systems[J]. Energy, 2018, 144: 341-378.
|
5 |
WU S F, YAN T, KUAI Z H, et al. Thermal conductivity enhancement on phase change materials for thermal energy storage: A review[J]. Energy Storage Materials, 2020, 25: 251-295.
|
6 |
ALVA G, LIN Y X, LIU L K, et al. Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: A review[J]. Energy and Buildings, 2017, 144: 276-294.
|
7 |
LIN Y X, ALVA G, FANG G Y. Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials[J]. Energy, 2018, 165: 685-708.
|
8 |
JIANG F, ZHANG L L, SHE X H, et al. Skeleton materials for shape-stabilization of high temperature salts based phase change materials: A critical review[J]. Renewable and Sustainable Energy Reviews, 2020, 119: doi: 10.1016/j.rser.2019.109539.
|
9 |
FERNÁNDEZ A I, BARRENECHE C, BELUSKO M, et al. Considerations for the use of metal alloys as phase change materials for high temperature applications[J]. Solar Energy Materials and Solar Cells, 2017, 171: 275-281.
|
10 |
GE Z W, YE F, CAO H, et al. Carbonate-salt-based composite materials for medium- and high-temperature thermal energy storage[J]. Particuology, 2014, 15: 77-81.
|
11 |
LI C, LI Q, CONG L, et al. MgO based composite phase change materials for thermal energy storage: The effects of MgO particle density and size on microstructural characteristics as well as thermophysical and mechanical properties[J]. Applied Energy, 2019, 250: 81-91.
|
12 |
桑丽霞, 李锋. 碳酸盐复合蓄热材料的制备及热物性研究[J]. 化工学报, 2018, 69(S1): 129-135.
|
|
SANG L X, LI F. Study on preparation and thermal properties of carbonates composite heat storage materials[J]. CIESC Journal, 2018, 69(S1): 129-135.
|
13 |
ACURIO K, CHICO-PROANO A, MARTÍNEZ-GÓMEZ J, et al. Thermal performance enhancement of organic phase change materials using spent diatomite from the palm oil bleaching process as support[J]. Construction and Building Materials, 2018, 192: 633-642.
|
14 |
JIANG Z, LENG G H, YE F, et al. Form-stable LiNO3-NaNO3-KNO3-Ca(NO3)2/calcium silicate composite phase change material (PCM) for mid-low temperature thermal energy storage[J]. Energy Conversion and Management, 2015, 106: 165-172.
|
15 |
ZHANG H Z, SUN S Y, WANG X D, et al. Fabrication of microencapsulated phase change materials based on n-octadecane core and silica shell through interfacial polycondensation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 389(1/2/3): 104-117.
|
16 |
LI Q, LI C, QIAO G, et al. Effects of MgO particle size and density on microstructure development of MgO based composite phase change materials[J]. Energy Procedia, 2019, 158: 4517-4522.
|
17 |
GUILLOT S, FAIK A, RAKHMATULLIN A, et al. Corrosion effects between molten salts and thermal storage material for concentrated solar power plants[J]. Applied Energy, 2012, 94: 174-181.
|
18 |
MOTTE F, FALCOZ Q, VERON E, et al. Compatibility tests between Solar Salt and thermal storage ceramics from inorganic industrial wastes[J]. Applied Energy, 2015, 155: 14-22.
|
19 |
WANG T Y, ZHANG T Y, XU G Z, et al. A new low-cost high-temperature shape-stable phase change material based on coal fly ash and K2CO3[J]. Solar Energy Materials and Solar Cells, 2020, 206: doi:10.1016/j.solmat.2019.110328.
|
20 |
QIU F, SONG S K, LI D N, et al. Experimental investigation on improvement of latent heat and thermal conductivity of shape-stable phase-change materials using modified fly ash[J]. Journal of Cleaner Production, 2020, 246: doi:10.1016/j.jclepro.2019.118952.
|
21 |
RAM V V, SINGHAL R, PARAMESHWARAN R. Energy efficient pumpable cement concrete with nanomaterials embedded PCM for passive cooling application in buildings[J]. Materials Today: Proceedings, 2020, 28: 1054-1063.
|
22 |
ROSTAMI J, KHANDEL O, SEDIGHARDEKANI R, et al. Enhanced workability, durability, and thermal properties of cement-based composites with aerogel and paraffin coated recycled aggregates[J]. Journal of Cleaner Production, 2021, 297: doi:10.1016/j.jclepro. 2021.126518.
|
23 |
TAYEB A M. Use of some industrial wastes as energy storage media[J]. Energy Conversion and Management, 1996, 37(2): 127-133.
|
24 |
王燕, 黄云, 姚华, 等. 太阳盐/钢渣定型复合相变储热材料的制备与性能研究[J]. 过程工程学报, 2021, 21(3): 332-340.
|
|
WANG Y, HUANG Y, YAO H, et al. Fabrication and characterization of form-stable solar salt/steel slag composite phase change material for thermal energy storage[J]. The Chinese Journal of Process Engineering, 2021, 21(3): 332-340.
|
25 |
ZHANG Y B, LIU J C, SU Z J, et al. Preparation of low-temperature composite phase change materials (C-PCMs) from modified blast furnace slag (MBFS)[J]. Construction and Building Materials, 2020, 238: doi:10.1016/j.conbuildmat.2019.117717.
|
26 |
张浩, 杨刚, 龙红明. 改性钢渣基相变微粉的制备与性能[J]. 过程工程学报, 2017, 17(6): 1304-1309.
|
|
ZHANG H, YANG G, LONG H M. Preparation and performance of modified steel slag-based phase change powders[J]. The Chinese Journal of Process Engineering, 2017, 17(6): 1304-1309.
|
27 |
方圆, 吴旻, 唐刚. 改性钢渣基相变储能型丁苯橡胶的制备及其性能研究[J]. 硅酸盐通报, 2018, 37(11): 3669-3673, 3683.
|
|
FANG Y, WU M, TANG G. Preparation of modified steel slag-based phase change energy storage styrene butadiene rubber and its properties[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(11): 3669-3673, 3683.
|
28 |
MEMON S A, LO T Y, BARBHUIYA S A, et al. Development of form-stable composite phase change material by incorporation of dodecyl alcohol into ground granulated blast furnace slag[J]. Energy and Buildings, 2013, 62: 360-367.
|
29 |
ZHANG Y B, LIU J C, SU Z J, et al. Utilizing blast furnace slags (BFS) to prepare high-temperature composite phase change materials (C-PCMs)[J]. Construction and Building Materials, 2018, 177: 184-191.
|
30 |
WANG J L, WANG Y, HUANG Y. Synthesis and characterization of form-stable carbonate/steel slag composite materials for thermal energy storage[J]. Journal of Energy Storage, 2022, 52: doi:10.1016/j.est.2022.104708.
|
31 |
GROEN J C, PEFFER L A A, PÉREZ-RAMı́REZ J. Pore size determination in modified micro-and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis[J]. Microporous and Mesoporous Materials, 2003, 60(1/2/3): 1-17.
|