1 |
KALNÆS S E, JELLE B P. Phase change materials and products for building applications: A state-of-the-art review and future research opportunities[J]. Energy and Buildings, 2015, 94: 150-176.
|
2 |
清华大学建筑节能研究中心. 中国建筑节能年度发展研究报告-2020-农村住宅专题[M]. 北京: 中国建筑工业出版社, 2020.
|
3 |
刘凤利, 朱教群, 马保国, 等. 相变石膏板制备及其在建筑墙体中应用的研究进展[J]. 硅酸盐学报, 2016, 44(8): 1178-1191.
|
|
LIU F L, ZHU J Q, MA B G, et al. Research progress on preparation and application of gypsum phase change wallboard in building wall[J]. Journal of the Chinese Ceramic Society, 2016, 44(8): 1178-1191.
|
4 |
王立久, 孟多. 有机相变材料的建筑节能应用和研究[J]. 材料导报, 2009, 23(1): 97-100.
|
|
WANG L J, MENG D. Application and research of building energy conservation of organic phase change material[J]. Materials Review, 2009, 23(1): 97-100.
|
5 |
YUAN Y P, ZHANG N, TAO W Q, et al. Fatty acids as phase change materials: A review[J]. Renewable and Sustainable Energy Reviews, 2014, 29: 482-498.
|
6 |
QIN Y, LENG G H, YU X, et al. Sodium sulfate-diatomite composite materials for high temperature thermal energy storage[J]. Powder Technology, 2015, 282: 37-42.
|
7 |
FENG D L, FENG Y H, QIU L, et al. Review on nanoporous composite phase change materials: Fabrication, characterization, enhancement and molecular simulation[J]. Renewable and Sustainable Energy Reviews, 2019, 109: 578-605.
|
8 |
LIU L K, SU D, TANG Y J, et al. Thermal conductivity enhancement of phase change materials for thermal energy storage: A review[J]. Renewable and Sustainable Energy Reviews, 2016, 62: 305-317.
|
9 |
徐众, 侯静, 李军, 等. 不同粒径活性炭/肉豆蔻酸复合相变材料[J]. 储能科学与技术, 2021, 10(1): 177-189.
|
|
XU Z, HOU J, LI J, et al. Properties of different particle-sized activated carbon/myristic acid composite phase change material[J]. Energy Storage Science and Technology, 2021, 10(1): 177-189.
|
10 |
冷光辉, 曹惠, 彭浩, 等. 储热材料研究现状及发展趋势[J]. 储能科学与技术, 2017, 6(5): 1058-1075.
|
|
LENG G H, CAO H, PENG H, et al. The new research progress of thermal energy storage materials[J]. Energy Storage Science and Technology, 2017, 6(5): 1058-1075.
|
11 |
JACOB R, BRUNO F. Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2015, 48: 79-87.
|
12 |
汪意, 杨睿, 张寅平, 等. 定形相变材料的研究进展[J]. 储能科学与技术, 2013, 2(4): 362-368.
|
|
WANG Y, YANG R, ZHANG Y P, et al. Recent progress in shape-stabilized phase change materials[J]. Energy Storage Science and Technology, 2013, 2(4): 362-368.
|
13 |
LECOMPTE T, BIDEAU P L, GLOUANNEC P, et al. Mechanical and thermo-physical behaviour of concretes and mortars containing phase change material[J]. Energy and Buildings, 2015, 94: 52-60.
|
14 |
ZHAO J L, LUO W J, KIM J K, et al. Graphene oxide aerogel beads filled with phase change material for latent heat storage and release[J]. ACS Applied Energy Materials, 2019, 2(5): 3657-3664.
|
15 |
RAO V V, PARAMESHWARAN R, RAM V V. PCM-mortar based construction materials for energy efficient buildings: A review on research trends[J]. Energy and Buildings, 2018, 158: 95-122.
|
16 |
KONG X F, JIE P F, YAO C Q, et al. Experimental study on thermal performance of phase change material passive and active combined using for building application in winter[J]. Applied Energy, 2017, 206: 293-302.
|
17 |
ZHU N, HU P F, XU L H. A simplified dynamic model of double layers shape-stabilized phase change materials wallboards[J]. Energy and Buildings, 2013, 67: 508-516.
|
18 |
ASCIONE F, BIANCO N, DE MASI R F, et al. Energy refurbishment of existing buildings through the use of phase change materials: Energy savings and indoor comfort in the cooling season[J]. Applied Energy, 2014, 113: 990-1007.
|
19 |
SAYYAR M, WEERASIRI R R, SOROUSHIAN P, et al. Experimental and numerical study of shape-stable phase-change nanocomposite toward energy-efficient building constructions[J]. Energy and Buildings, 2014, 75: 249-255.
|
20 |
BECKER R. Improving thermal and energy performance of buildings in summer with internal phase change materials[J]. Journal of Building Physics, 2014, 37(3): 296-324.
|
21 |
谷亚新, 乔麟奇, 宋玉博, 等. 石蜡基复合相变材料的制备和稳定性研究[J]. 塑料科技, 2016, 44(5): 54-57.
|
|
GU Y X, QIAO L Q, SONG Y B, et al. Study on stability of paraffin-based composite phase change material and its preparation[J]. Plastics Science and Technology, 2016, 44(5): 54-57.
|
22 |
孙建忠, 吴子钊. 建材用相变工质材料渗出程度评价方法的研究[J]. 新型建筑材料, 2004, 31(7): 43-46.
|
23 |
贾冠华, 刘鹏, 李珠. 气凝胶/膨胀珍珠岩的制备及其微观特征对导热性能的影响[J]. 硅酸盐通报, 2018, 37(3): 1039-1046.
|
|
JIA G H, LIU P, LI Z. Preparation of aerogel/expanded perlite and effect of its microstructure on thermal conductivity[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(3): 1039-1046.
|
24 |
费华, 顾庆军, 王林雅, 等. 癸酸-棕榈酸二元复合相变材料的相变特性研究[J]. 太阳能学报, 2020, 41(1): 80-85.
|
|
FEI H, GU Q J, WANG L Y, et al. Phase transition properties of capric-palmitic acid binary composite phase change materials[J]. Acta Energiae Solaris Sinica, 2020, 41(1): 80-85.
|
25 |
孟多, 党昕, 王安琪, 等. 石蜡基相变蓄热板的热性能及建筑控温效果研究[J]. 新型建筑材料, 2021, 48(11): 82-87, 111.
|
|
MENG D, DANG X, WANG A Q, et al. Thermal properties and building temperature control effect of the paraffin based phase change thermal energy storage plate[J]. New Building Materials, 2021, 48(11): 82-87, 111.
|
26 |
张佩佩. 粉煤灰复合相变材料的制备和相关性能研究[D]. 阜新: 辽宁工程技术大学, 2021.
|
|
ZHANG P P. Research on preparation and related properties of fly ash composite phase change material[D]. Fuxin: Liaoning Technical University, 2021.
|
27 |
张寅平. 相变贮能: 理论和应用[M]. 合肥: 中国科学技术大学出版社, 1996.
|
28 |
王凯峰, 鲍玲玲, 侯倩倩. 日光温室多层相变墙体传热特性的数值模拟研究[J]. 新型建筑材料, 2021, 48(9): 110-114.
|
|
WANG K F, BAO L L, HOU Q Q. Numerical simulation of heat transfer characteristics of multi-layer phase change wall in solar greenhouse[J]. New Building Materials, 2021, 48(9): 110-114.
|
29 |
汪安楠. 夏热冬冷地区建筑外围护结构热工性能测试分析及其对建筑能耗的影响研究[D]. 南京: 东南大学, 2020.
|
|
WANG A N. Test analyses on the building envelope thermal performance and its effect on the building energy consumption in hot-summer and cold-winter zone[D]. Nanjing: Southeast University, 2020.
|