1 |
陈立铎, 马天翼, 马绪, 等. 锂离子电池三维层级循环寿命对应关系研究[J]. 储能科学与技术, 2019, 8(5): 843-849.
|
|
CHEN L D, MA T Y, MA X, et al. The corresponding relationship of cycle life for LIB from three-dimensional[J]. Energy Storage Science and Technology, 2019, 8(5): 843-849.
|
2 |
王芳, 樊彬, 刘仕强, 等. 磷酸铁锂动力电池日历寿命加速测试与拟合[J]. 电源技术, 2015, 39(1): 30-33.
|
|
WANG F, FAN B, LIU S Q, et al. Calendar life accelerated testing & evaluation of lithium iron phosphate battery[J]. Chinese Journal of Power Sources, 2015, 39(1): 30-33.
|
3 |
邓爽, 王宏伟, 郭少波, 等. 镍钴锰酸锂(NCM)三元锂电池的容量衰减加速测试[J]. 电池工业, 2019, 23(5): 244-247.
|
|
DENG S, WANG H W, GUO S B, et al. Cycle life decay accelerated testing of Li(NiCoMn)O2 lithium ion battery[J]. Chinese Battery Industry, 2019, 23(5): 244-247.
|
4 |
刘建. 钴酸锂电池加速寿命试验及模型研究[D]. 绵阳: 西南科技大学, 2020.
|
|
LIU J. Accelerated life test and model study of lithium cobalt battery[D]. Mianyang: Southwest University of Science and Technology, 2020.
|
5 |
RUIZ V, KRISTON A, ADANOUJ I, et al. Degradation studies on lithium iron phosphate-graphite cells. the effect of dissimilar charging-discharging temperatures[J]. Electrochimica Acta, 2017, 240: 495-505.
|
6 |
GUAN T, SUN S, GAO Y Z, et al. The effect of elevated temperature on the accelerated aging of LiCoO2/mesocarbon microbeads batteries[J]. Applied Energy, 2016, 177: 1-10.
|
7 |
吴正国, 张剑波, 李哲, 等. 锂离子电池加速老化温度应力的滥用边界[J]. 汽车安全与节能学报, 2018, 9(1): 99-109.
|
|
WU Z G, ZHANG J B, LI Z, et al. Aging abuse boundary of lithium-ion cell above room temperature[J]. Journal of Automotive Safety and Energy, 2018, 9(1): 99-109.
|
8 |
丁鹏飞, 孙坚, 徐红伟. 三元锂电池温度-放电倍率耦合加速寿命模型研究[J]. 计量学报, 2022, 43(2): 250-255.
|
|
DING P F, SUN J, XU H W. Study on temperature-discharge rate coupling accelerated life model of ternary lithium battery[J]. Acta Metrologica Sinica, 2022, 43(2): 250-255.
|
9 |
GAO Y, JIANG J C, ZHANG C P, et al. Lithium-ion battery aging mechanisms and life model under different charging stresses[J]. Journal of Power Sources, 2017, 356: 103-114.
|
10 |
卢立丽, 王庆华, 于冰, 等. LiFePO4动力电池加速循环寿命实验研究[J]. 电源技术, 2021, 45(9): 1112-1114.
|
|
LU L L, WANG Q H, YU B, et al. Research on cycle life accelerating of LiFePO4 power battery[J]. Chinese Journal of Power Sources, 2021, 45(9): 1112-1114.
|
11 |
AN S J, PARK J Y, SONG J, et al. A fast method for evaluating stability of lithium ion batteries at high C-rates[J]. Journal of Power Sources, 2020, 480: doi: 10.1016/j.jpowsour.2020.228856.
|
12 |
HARLOW J E, GLAZIER S L, LI J, et al. Use of asymmetric average charge- and average discharge-voltages as an indicator of the onset of unwanted lithium deposition in lithium-ion cells[J]. Journal of the Electrochemical Society, 2018, 165(16): doi: 10.1149/2.0011816jes.
|
13 |
HALLAJ S A, PRAKASH J, SELMAN J R. Characterization of commercial Li-ion batteries using electrochemical-calorimetric measurements[J]. Journal of Power Sources, 2000, 87(1/2): 186-194.
|
14 |
AN S J, LI J L, DANIEL C, et al. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling[J]. Carbon, 2016, 105: 52-76.
|
15 |
SUN J M, CAO X, YANG H J, et al. The origin of high-voltage stability in single-crystal layered Ni-rich cathode materials[J]. Angewandte Chemie International Edition, 2022, 61(40): doi: 10.1002/anie.202207225.
|