储能科学与技术 ›› 2014, Vol. 3 ›› Issue (3): 179-190.doi: 10.3969/j.issn.2095-4239.2014.03.001
• 特约文章 • 下一篇
徐治国, 赵长颖, 纪育楠, 赵耀
收稿日期:
2014-04-20
出版日期:
2014-05-01
发布日期:
2014-05-01
通讯作者:
赵长颖,教授,博导,主要研究方向为多孔介质传热,热能高效储存机理及微纳尺度热辐射,E-mail:changying.zhao@sjtu.edu.cn.
作者简介:
第一作者:徐治国(1978--),男,博士后,研究方向为多孔介质传热,蓄热技术,E-mail:zhiguoxu@sjtu.edu.cn;
基金资助:
XU Zhiguo, ZHAO Changying, JI Yunan, ZHAO Yao
Received:
2014-04-20
Online:
2014-05-01
Published:
2014-05-01
摘要: 相变蓄热技术由于蓄热密度大,温度恒定,在国内外得到广泛的研究与应用,尤其在能源供给不连续的情况下,应用的尤其广泛.相变储热系统作为解决能源供应时间与空间矛盾的有效手段,是提高能源利用率的重要途径之一.本文从相变材料的选取,相变过程数值模拟,相变蓄热装置3个方面对中低温相变蓄热的研究进行了综述.首先介绍了中低温相变材料的种类及其循环稳定性,导热能力强化,其次总结了适用于中低温相变蓄热的数值模拟方法和理论,然后介绍了不同的相变储热器,最后指出了中低温相变蓄热的研究目标和方向.
中图分类号:
徐治国, 赵长颖, 纪育楠, 赵耀. 中低温相变蓄热的研究进展[J]. 储能科学与技术, 2014, 3(3): 179-190.
XU Zhiguo, ZHAO Changying, JI Yunan, ZHAO Yao. State-of-the-art of phase-change thermal storage at middle-low temperature[J]. Energy Storage Science and Technology, 2014, 3(3): 179-190.
[1] Sharma A,Tyagi V,Chen C R,Buddhi D. Review on thermal energy storage with phase change materials and applications[J]. Renewable & Sustainable Energy Review ,2009,13(2):318-345. [2] Telkes M,Raymond E. Storing solar heat in chemicals A report on the dover house[J]. Heat Vent ,1949,46(11):80-86. [3] Kuznik F,David D,Johannes K,Roux J. A review on phase change materials integrated in building walls[J]. Renewable and Sustainable Energy Reviews ,2011,15(1):379-391. [4] Nagano K,Takeda S,Mochida T,Shimakura K,Nakamura T. Study of a floor supply air conditioning system using granular phase change material to augment building mass thermal storage Heat response in small scale experiments[J]. Energy and Buildings ,2006,38:436-446. [5] Liu M,Saman W,Bruno F. Validation of a mathematical model for encapsulated phase change material flat slabs for cooling applications[J]. Applied Thermal Engineering ,2011,31:2340-2347. [6] Kandasamy R,Wang X Q,Mujumdar A S. Application of phase change materials in thermal management of electronics[J]. Applied Thermal Engineering ,2007,27:2822-2832. [7] Liu M,Wasim S,Frank B. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems[J]. Renewable and Sustainable Energy Reviews ,2012,16:2118-2132. [8] Xie Gang(谢刚). 熔融盐理论与应用[M]. Beijing:Metallurgical Industry Press,1998. [9] Cui Haiting(崔海亭),Yuan Xiugan(袁修干),Xing Yuming(邢玉明). Parametric study of heat receiver mass in space solar dynamic system[J]. Journal of Aerospace Power (航空动力学报),2003,18(6):819-823. [10] Xing Yuming(邢玉明),Cui Haiting(崔海亭),Yuan Xiugan(袁修干). Numerical simulations of high temperature molten salt phase change heat storage system[J]. Journal of Beijing University of Aeronautics and Astronautics (北京航空航天大学学报),2002,28(3):295-297. [11] 于建国,宋兴福,潘惠琴.(LiNO 3 -KNO 3 -NaNO 3 -NaNO 2 )混合熔盐及制备方法:中国,1263924A[P]. 2000-08-23. [12] 丁静,魏小兰,彭强,等 . 一种熔融盐传热蓄热介质及其制备方法:中国,l01050355[P]. 2007-10-10. [13] Kourkova L,Sadovska G. Heat capacity, enthalpy and entropy of Li 2 CO 3 at 303.5-563.15K[J]. Themochimica Acta , Short Communication , 2007,452:80-81. [14] 魏小兰,丁静,廖敏,等 . 一种碳酸熔融盐传热蓄热介质及其制备方法与应用:中国,l01289612[P]. 2008-10-22. [15] 丁静,魏小兰,杨建平,等. 一种含锂碳酸熔融盐传热蓄热介质及其制备方法与应用:中国,l01508888[P]. 2009-08-19. [16] Sharma A,Tyagi V V,Chen C R, et al . Review on thermal energy storage with phase change materials and applications[J]. Renewable and Sustainable Energy Reviews ,2009,13(2):318-345. [17] Wang Yongjun(王永军),Wang Shenglin(王胜林). Preparation and characterization of Na 2 SO 4 /MgO composite phase change material for thermal energy storage[J]. Energy for Metallurgical Industry (冶金能源),2011,30(3):42-45. [18] Pacheco J,Showalter S,Kolb W. Development of a molten salt thermocline thermal storage system for parabolic trough plants[J]. ASME J. Solar Energy Engineering ,2002,124(2):153-159. [19] Doug B.Testing of thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems in parabolic trough power plants[J]. Solar Energy Engineering ,2005,172(2):109-116. [20] Sun Liping(孙李平). Experimental research on molten salt corrosion property and optimization[D]. Beijing:Beijing University of Technology,2007. [21] Tamme R,Struber C. Energy storage development for solar thermal process[J]. Journal of Solar Energy ,1991,12 :386. [22] Tamme R,Taut U,Struber C. Advanced regenerator Media for industrial and solar thermal application[C]//New York: 25th IECEC Proceedings,1990:1452. [23] Williams D F,Wilson D F,Toth L M, et al . The selectness of high-temperature phase change material Al-Si alloy and experimental research on the container[J]. Acta Energiae Solaris Sinica (太阳能学报),2006,27(1):36-39. [24] Liu Jing(刘靖),Wang Xin(王馨),Zeng Daben(曾大本), et al . Research on Molten Fluorides as High Temperature Heat[C]//New Orleans:Transfer Agents,2003:16-20. [25] Goods S H,Branshaw R W. Corrosion of stainless steels and carbon steel by molten mixtures of commercial nitrate salts[J]. Journal of Materials Engineering and Performance ,2004,13(1):78-87. [26] Cabeza L F,Illa J,Roca J, et al . Immersion corrosion tests on metal salt hydrate pairs used for latent heat storage in the 32 36 ℃ temperature range[J]. Mater. Corros .,2001,52(2):140-146. [27] Sun J Q,Zhang R Y,Liu Z P,et al. The thermal reliability test of Al-34%Mg-6% Zn alloy as latent heat storage material And corrosion of the metal with the new one to thermal cycling[J]. Energy Conversion Management ,2007 (48):619 [28] Li Huipeng(李辉鹏),Zhang Renyuan(张仁元),Mao Lingbo(毛凌波), et al . A tentative study of the heat storage properties of Al-Si alloy[J]. Journal of Guangdong University of Technology (广州工业大学学报),2009,4:37. [29] Sehn Xuezhong(沈学忠). 铝硅二元共晶合金储热循环稳定性及其对容器的表面处理研究[D]. Guangzhou:Guangdong University of Technology,2007. [30] Gokon N,Nakano D,Inuta S, et al . High-temperature carbonate/MgO composite materials as thermal storage media for double-walled solar reformer tubes[J]. Solar Energy ,2008,82(12):1145-1153. [31] Zhang P,Song L,Lu H D, et al. The influence of expanded graphite on thermal properties for paraffin/high density polyethylene/ chlorinated paraffin/antimony trioxide as a flame retardant phase change material[J]. Energy Conversion and Management ,2010, 51(12):2733-2737. [32] Lopez J,Gustavo C,Barrio E P D, et al. Confined melting in deformable porous media:A first attempt to explain the graphite/salt composites behaviour[J]. International Journal of Heat and Mass Transfer ,2010,53(5-6):1195-1207. [33] Steinmann W D,Tamme R. Latent heat storage for solar steam systems[J]. Journal of Solar Energy Engineering ,2008,130(1):011004. [34] Zhao C Y. Review on thermal transport in high porosity cellular metal foams with open cells[J]. International Journal of Heat and Mass Transfer ,2012,55(13-14):3618-3632. [35] Zhao C Y,Lu W,Tian W, et al. Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs)[J]. Solar Energy ,2010,84(8):1402-1412. [36] Tian Y,Zhao C Y. A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals[J]. Energy ,2011,36(9):5539-5546. [37] Wu Z G,Zhao C Y. Experimental investigations of porous materials in high temperature thermal energy storage systems[J]. Solar Energy ,2011,85(7):1371-1380. [38] Zhao C Y,Wu Z G. Heat transfer enhancement of high temperature thermal energy storage using metal foams and expanded graphite[J]. Solar Energy Materials and Solar Cells ,2011,95(2):636-643. [39] Zhou D,Zhao C Y. Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials[J]. Applied Thermal Engineering ,2011,31(5):970-977. [40] Mettawee E B S,Assassa G M R. Thermal conductivity enhancement in a latent heat storage system[J]. Solar Energy ,2007,81(7):839-845. [41] Fukai J,Hamada Y,Morozumi Y, et al . Improvement of thermal characteristics of latent heat thermal energy storage units using carbon-fiber brushes:Experiments and modeling[J]. International Journal of Heat and Mass Transfer ,2003,46(23):4513-4525. [42] Elgafy A,Lafdi K. Effect of carbon nanofiber additives on thermal behavior of phase change materials[J]. Carbon ,2005,43(15):3067-3074. [43] Agyenim F,Eamesb P,Smytha M, et al. A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins[J]. Solar Energy ,2009,83(9):1509-1520. [44] Al-Abidi A A,Mat S,Sopian K, et al . Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers[J]. Applied Thermal Engineering ,2013,53(1):147-156. [45] Tay N H S,Bruno F,Belusko M, et al. Comparison of pinned and finned tubes in a phase change thermal energy storage system using CFD[J]. Applied Energy ,2013,104:79-86. [46] Adinberg R,Zvegilsky D,Epstein M, et al. Heat transfer efficient thermal energy storage for steam generation[J]. Energy Conversion and Management ,2010,51(1):9-15. [47] Shabgard H,Sharifi N,Faghri A, et al. High temperature latent heat thermal energy storage using heat pipes[J]. International Journal of Heat and Mass Transfer ,2010,53(15-16):2979-2988. [48] Nithyanandam K,Pitchumani R. Analysis and optimization of a latent thermal energy storage system with embedded heat pipes[J]. International Journal of Heat and Mass Transfer ,2011,54(21-22):4596-4610. [49] Gao D,Chen Z Q,Shi M H, et al. Study on the melting process of phase change materials in metal foams using lattice Boltzmann method[J]. Science China Technological Sciences ,2010,53(11):3079-3087. [50] Tao Y,He Y. Numerical study on thermal energy storage performance of phase change material under non-steady-state inlet boundary[J]. Applied Energy ,2011,88(11):4172-4179. [51] Maroufi A,Aghanajafi C. Analysis of conduction-radiation heat transfer during phase change process of semitransparent materials using lattice Boltzmann method[J]. Journal of Quantitative Spectroscopy and Radiative Transfer ,2013,116:145-155. [52] Miranda F J,Johannes K,Kuznik F, et al . Melting with convection and radiation in a participating phase change material[J]. Applied Energy ,2013,109:454-461. [53] Jourabian M. Lattice Boltzmann simulation of melting phenomenon with natural convection from an eccentric annulus[J]. International Journal of Thermal Science ,2013,4:12. [54] Miller W,Succi S,Mansutti D. Lattice Boltzmann model for anisotropic liquid-solid phase transition[J]. Physical Review Letters ,2001,86(16):3578. [55] Boettinger W,Warren J A,Beckermann C, et al. Phase-field simulation of solidification[J]. Annual Review of Materials Research ,2002,32(1):163-194. [56] Han X,Tian Y,Zhao C. An effectiveness study of enhanced heat transfer in phase change materials (PCMs)[J]. International Journal of Heat and Mass Transfer ,2013,60:459-468. [57] Tan L,Zabaras N. A level set simulation of dendritic solidification with combined features of front-tracking and fixed-domain methods[J]. Journal of Computational Physics ,2006,211(1):36-63. [58] Mencinger J. Numerical simulation of melting in two-dimensional cavity using adaptive grid[J]. Journal of Computational Physics ,2004,198(1):243-264. [59] Javierre E,Vuik C,Wormolen F J, et al. A comparison of numerical models for one-dimensional Stefan problems[J]. Journal of Computational and Applied Mathematics ,2006,192(2):445-459. [60] Chatterjee D,Chakraborty S. A hybrid lattice Boltzmann model for solid-liquid phase transition in presence of fluid flow[J]. Physics Letters A ,2006,351(4):359-367. [61] Lu W,Zhao C,Tassou S. Thermal analysis on metal-foam filled heat exchangers. Part I:Metal-foam filled pipes[J]. International Journal of Heat and Mass Transfer ,2006,49(15):2751-2761. [62] Zhao C,Lu T J,Hodson H P, et al. The temperature dependence of effective thermal conductivity of open-celled steel alloy foams[J]. Materials Science and Engineering : A ,2004,367(1):123-131. [63] Zhao C,Lu T,Hodson H. Thermal radiation in ultralight metal foams with open cells[J]. International Journal of Heat and Mass Transfer ,2004,47(14):2927-2939. [64] Zhao C,Kim T,Lu T G, et al . Thermal transport in high porosity cellular metal foams[J]. Journal of Thermophysics and Heat Transfer ,2004,18(3):309-317. [65] Zhao C,Lu W,Tassou S. Thermal analysis on metal-foam filled heat exchangers. Part II:Tube heat exchangers[J]. International Journal of Heat and Mass Transfer ,2006,49(15):2762-2770. [66] Zhao C,Lu T,Hodson H. Natural convection in metal foams with open cells[J]. International Journal of Heat and Mass Transfer ,2005,48(12):2452-2463. [67] Zhao C Y,Lu W,Tian Y. Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs)[J]. Solar Energy ,2010,84(8):1402-1412. [68] Zhao C Y,Tassou S,Lu T. Analytical considerations of thermal radiation in cellular metal foams with open cells[J]. International Journal of Heat and Mass Transfer ,2008,51(3):929-940. [69] Zhou D,Zhao C Y. Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials[J]. Applied Thermal Engineering ,2011,31(5):970-977. [70] Zhao C Y,Wu Z. Heat transfer enhancement of high temperature thermal energy storage using metal foams and expanded graphite[J]. Solar Energy Materials and Solar Cells ,2011,95(2):636-643. [71] Dardis O,Mccloskey J. Lattice Boltzmann scheme with real numbered solid density for the simulation of flow in porous media[J]. Physical Review E ,1998,57(4):4834. [72] Spaid M A,Phelan J F R. Lattice Boltzmann methods for modeling microscale flow in fibrous porous media[J]. Physics of Fluids ,1997,9:2468. [73] Succi S,Foti E,Higuera F. Three-dimensional flows in complex geometries with the lattice Boltzmann method[J]. Europhysics Letters ,1989,10(5):433. [74] Farid M M,Kanzawa A. Thermal performance of a heat storage module using PCMs with different melting temperatures:Mathematical modeling[J]. ASME Journal of Solar Energy Engineering ,1989,111(2):152-157. [75] Chinnapandian M,Pandiyarajan V,Velraj R. A study on the thermodynamic analysis of a cascaded latent heat storage system over the single storage tank system for diesel engine waste heat recovery[J]. International Journal of Energy ,2012,11(3):349-370. [76] Shabgard H,Robak C W,Bergman T L, et al . Heat transfer and exergy analysis of cascaded latent heat storage with gravity-assisted heat pipes for concentrating solar power applications[J]. Solar Energy ,2012,86(3):816-830. [77] Michels H,Pitz-Paal R. Cascaded latent heat storage for parabolic trough solar power plants[J]. Solar Energy ,2007,81(6):829-837. [78] Kousksou T,Strug F,Lasvignottes J C, et al . Second law analysis of latent thermal storage for solar system[J]. Solar Energy Materials and Solar Cells ,2007,91(14):1275-1281. [79] Jegadheeswaran S,Pohekar S D,Kousksou T. Exergy based performance evaluation of latent heat thermal storage system:A review[J]. Renewable & Sustainable Energy Reviews ,2010,14(9):2580-2595. [80] Li Y Q,He Y L,Wang Z F, et al . Exergy analysis of two phase change materials storage system for solar thermal power with finite-time thermodynamics[J]. Renewable Energy ,2012,39(1):447-454. [81] Gong Z X,Mujumdar A S. Thermodynamic optimization of the thermal process in energy storage using multiple phase change materials[J]. Applied Thermal Engineering ,1997,17(11):1067-1083. [82] Gong Z X,Mujumdar A S. Cyclic heat transfer in a novel storage unit of multiple phase change materials[J]. Applied Thermal Engineering ,1996,16(10):807-815. [83] Gong Z X,Mujumdar A S. Finite element analysis of a multistage latent heat thermal storage system[J]. Numerical Heat Transfer,Part A : Applications ,1996,30(7):669-684. [84] Gong Z X,Mujumdar A S. Enhancement of energy charge-discharge rates in composite slabs of different phase change materials[J]. International Journal of Heat and Mass Transfer ,1996,39(4):725-733. [85] Watanabe T,Kanzawa A. Second law optimization of a latent heat storage system with PCMS having different melting points[J]. Heat Recovery Systems and CHP ,1995,15(7):641-653. [86] Farid M M,Kim Y,Kansawa A. Thermal performance of a heat storage module using PCM s with different melting temperature: Experimental[J]. ASME Journal of Solar Energy Engineering ,1990,112(2):125-131. [87] Watanabe T,Kikuchi H,Kanzawa A. Enhancement of charging and discharging rates in a latent heat storage system by use of PCM with different melting temperatures[J]. Heat Recovery Systems & CHP ,1993. 13(1):57-66. [88] Tian Y,Zhao C. Thermal and exergetic analysis of metal foam-enhanced cascaded thermal energy storage (MF-CTES)[J]. International Journal of Heat and Mass Transfer ,2013,58(1):86-96. [89] Farid M M,Kanzawa A. Thermal performance of a heat storage module using PCMs with different melting temperatures:Mathematical modeling, transactions of the ASME[J]. Journal of Solar Energy Engineering ,1989,111(2):152-157. [90] Farid M M,Kim Y,Kansawa A, et al . Thermal performance of a heat storage module using PCMs with different melting temperature:Experimental[J]. ASME Journal of Solar Energy Engineering ,1990,112(2):125-131. [91] Watanabe T,Kanzawa A. Second law optimization of a latent heat storage system with PCMS having different melting points[J]. Heat Recovery Systems and CHP ,1995,15(7):641-653. [92] Gong Z X,Mujumdar A S. Cyclic heat transfer in a novel storage unit of multiple phase change materials[J]. Applied Thermal Engineering ,1996,16(10):807-815. [93] Gong Z X,Mujumdar A S. Enhancement of energy charge-discharge rates in composite slabs of different phase change materials[J]. International Journal of Heat and Mass Transfer ,1996,39(4):725-733. [94] Gong Z X,Mujumdar A S. Thermodynamic optimization of the thermal process in energy storage using multiple phase change materials[J]. Applied Thermal Engineering ,1997,17(11):1067-1083. [95] El-Dessouky H,Al-Juwayhel F. Effectiveness of a thermal energy storage system using phase-change materials[J]. Energy Conversion Management ,1997,38:601-617. [96] Li Y Q,He Y L,Wang Z F, et al . Exergy analysis of two phase change materials storage system for solar thermal power with finite-time thermodynamics[J]. Renewable Energy ,2012,39(1):447-454. [97] Shabgard H,Robak C W,Bergman T L, et al. Heat transfer and exergy analysis of cascaded latent heat storage with gravity-assisted heat pipes for concentrating solar power applications[J]. Solar Energy ,2012,86(3):816-830. [98] Yang Lei(杨磊),Zhang Xiaosong(张小松). Charge performance of packed bed thermal storage unit with phase change material having different melting points[J]. CIESC Journal (化工学报),2012,63(4):1032-1037. [99] Hu Peng(胡芃),Lu Dajie(卢大杰),Zhao Panpan(赵盼盼),Chen Zeshao(陈则韶). Thermodynamic analysis on optimum phase change temperature for multiple phase change materials[J]. CIESC Journal (化工学报),2013,64(7):2323-2327. [100] Guo Zengyuan(过增元),Liang Xingang(梁新刚),Zhu Hongye(朱宏晔). -描述物体传递热量能力的物理量[J]. Progress in Natural Science : Materials International (自然科学进展),2006,16(10):1288-1296. [101] Guo Zengyuan(过增元). New physical quantities in heat[J]. Journal of Engineering Thermophysics (工程热物理学报),2008,29(1):112-114. [102] Guo Z Y,Zhu H Y,Liang X G. Entransy-aphysical quantity describing heat heat transfer ability[J]. International Journal of Heat Mass Transfer ,2007,50(13):2545-2556 [103] Qian S,Huang L,Aute V, et al . Applicability of entransy dissipation based thermal resistance for design optimization of two-phase heat exchangers[J]. Applied Thermal Engineering ,2013,55:140-148. [104] Xia Shaojun(夏少军),Chen Lingen(陈林根),Sun Fengrui(孙丰瑞). Liquid-solid phase change thermal dissipation is minimized plot[J]. Sci. China : Tech. Sci. (中国科学:科学技术),2010,40(12):1521-1529. [105] Chen Yanlong(陈彦龙),Wang Xin(王馨),Teng Xiaoguo(滕小果). Optimal phase change temperature based on entransy and entropy generation analyses[J]. Journal of Engineering Thermophysics (工程热物理学报),2012,33(9):1597-1600. [106] Cui Haiting(崔海亭),Wang Zhenhui(王振辉),Guo Yanshu(郭彦书), et al . Experimental study on heat performance of new phase change thermal energy storagy unit[J]. Acta Energiae Solaris Sinica (太阳能学报),2009,30(10):1188-1192. [107] Ma Guiyang(马贵阳),Zheng Ping(郑平),Gong Zhili(龚智立). Manufacturing of phase change heat accumulator and exothermic heat capability test[J]. Journal of Liaoning University of Petroleum & Chemical Technology (辽宁石油化工大学学报),2005,25(4):55-57. [108] Liu Jincai(刘金才). Manufacture of phase change accumulator equipment for reclamation of afterheat[J]. Journal of Petrochemical Universities (石油化工高等学校学报),2005,18(3):72-75. [109] Xu Feng(徐峰),Sun Yong(孙勇),Shi Yongjiang(师涌江),Yang Guichun(杨桂春). The heat accumulating characteristics of the phase change material energy storage with helical coil[J] . Journal of Hebei Institute of Architecture and Civil Engineering (河北建筑工程学院学报),2013,31(1):56-62. [110] Wu Bin(吴斌),Xing Yuming(邢玉明). Numerical simulation and experimental study of a phase change heat accumulation system applicable for waste heat recovery[J]. Journal of Engineering for Thermal Energy and Power (热能动力工程),2011,26(1):53-57. [111] Li Y Q,He Y L,Song H J,Xu C,Wang W W. Numerical analysis and parameters optimization of shell-and-tube heat storage unit using three phase change materials[J]. Renewable Energy ,2013,59:92-99. [112] Vyshak N R,Jilani G. Numerical analysis of latent heat thermal energy storage system[J]. Energy Conversion and Management, 2007,48:2161-2168. [113] Agyenim F,Eames P,Smyth M. Heat transfer enhancement in medium temperature thermal energy storage system using a multi-tube heat transfer array[J]. Renewable Energy ,2010,35:198-207. [114] Gong Z X,Mujumdar A S. Finite-element analysis of cyclic heat transfer in a shell -and -tube latent heat energy storage exchanger[J]. Applied Thermal Engineering ,1997,17:1775-1785. [115] Yu Wanfu(余晚福),Zhang Zhengguo(张正国),Wang Shiping(王世平). Combination wind mechanical-electrical transducers[J]. New Energy (新能源),2000,22(2):34-45. [116] Enibe S O. Thermal analysis of a natural circulation solar air heater with phase change material energy storage[J]. Renewable Energy ,2003,28:2269-2299. [117] Xing Yuming(邢玉明),Yuan Xiugan(袁修干). Experimental investigation of thermal energy storage container of phase change materials for space station[J]. Journal of Aerospace Power (航空动力学报),2001,16(1):75-81. |
[1] | 杜保存, 黄丽娟, 雷勇刚, 宋翀芳, 王飞. 填充床熔盐蓄热器的动态温度与应力特性[J]. 储能科学与技术, 2022, 11(7): 2141-2150. |
[2] | 叶文兰, 赵明, 胡明禹, 田扬. 管束式相变蓄热器的蓄放热性能分析[J]. 储能科学与技术, 2022, 11(7): 2151-2160. |
[3] | 蒋铖一, 钟尊睿, 吴自德, 彭浩. C8H18~C11H24 混合烷烃体系相变材料的热力学性能[J]. 储能科学与技术, 2022, 11(6): 1957-1967. |
[4] | 周新宇, 栾道成, 胡志华, 凌俊华, 文科林, 刘浪, 阴志铭, 米书恒, 王正云. 含碳二元系相变储热材料储热性能分析选择[J]. 储能科学与技术, 2022, 11(4): 1175-1183. |
[5] | 李琛坤, 王帅, 黄俊. 电化学阻抗谱物理模型求解方法[J]. 储能科学与技术, 2022, 11(3): 912-920. |
[6] | 李钰颖, 魏雯珍, 李琦, 吴玉庭. 可用于低中温热能储存的四元硝酸盐/埃洛石/石墨定型复合材料的制备与研究[J]. 储能科学与技术, 2022, 11(3): 1044-1051. |
[7] | 张永学, 王梓熙, 鲁博辉, 杨胜旗, 赵泓宇. 雪花型翅片提高相变储热单元储/放热性能[J]. 储能科学与技术, 2022, 11(2): 521-530. |
[8] | 郭云琪, 盛楠, 朱春宇, 饶中浩. 基于模板法制备氧化铝纤维及其石蜡复合相变材料热性能[J]. 储能科学与技术, 2022, 11(2): 511-520. |
[9] | 杜昭, 阳康, 舒高, 韦攀, 杨肖虎. 金属泡沫内石蜡固液相变蓄热/放热实验[J]. 储能科学与技术, 2022, 11(2): 531-537. |
[10] | 次恩达, 王会, 李晓卿, 张英, 张振迎, 李建强. 六水硝酸镁-硝酸锂共晶盐/膨胀石墨复合相变材料的制备及性能强化[J]. 储能科学与技术, 2022, 11(1): 30-37. |
[11] | 张晓光, 潘晓楠, 李金铭, 刘丽, 何燕. 电池排布对锂电池组相变热管理性能的影响[J]. 储能科学与技术, 2022, 11(1): 127-135. |
[12] | 杨慧慧, 曾立, 汤波, 王小青, 陆勇. 谷电利用复合石蜡蓄热材料的制备及供暖墙体构造实验[J]. 储能科学与技术, 2022, 11(1): 19-29. |
[13] | 安治国, 张显, 祝惠, 张春杰. 蜂窝状CPCM/水冷复合式圆柱型锂电池散热性能[J]. 储能科学与技术, 2022, 11(1): 211-220. |
[14] | 吴熠, 张超, 凌子夜, 张正国, 方晓明. 石蜡/SEBS复合相变材料热疗鼻贴的研究[J]. 储能科学与技术, 2021, 10(4): 1285-1291. |
[15] | 黄菊花, 陈强, 曹铭, 张亚舫, 刘自强, 胡金. 相变材料与水套式液冷结构耦合的圆柱型锂离子电池组热管理仿真分析[J]. 储能科学与技术, 2021, 10(4): 1423-1431. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||