1 |
HANNAN M A, LIPU M S H, HUSSAIN A, et al. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 834-854.
|
2 |
周荔丹, 蔡东鹏, 姚钢, 等. 电池管理系统关键技术综述[J]. 电池, 2019, 49(4): 338-341.
|
|
ZHOU L D, CAI D P, YAO G, et al. Summation of key technology of battery management system[J]. Battery Bimonthly, 2019, 49(4): 338-341.
|
3 |
付诗意, 吕桃林, 闵凡奇, 等. 电动汽车用锂离子电池SOC估算方法综述[J]. 储能科学与技术, 2021, 10(3): 1127-1136.
|
|
FU S Y, LYU T L, MIN F Q, et al. Review of estimation methods on SOC of lithium-ion batteries in electric vehicles[J]. Energy Storage Science and Technology, 2021, 10(3): 1127-1136.
|
4 |
WAHYUDDIN M I, PRIAMBODO P S, SUDIBYO H. State of charge (SOC) analysis and modeling battery discharging parameters[C]//2018 4th International Conference on Science and Technology (ICST). August 7-8, 2018, Yogyakarta, Indonesia. IEEE, 2018: 1-5.
|
5 |
郭宝甫, 张鹏, 王卫星, 等. 基于OCV-SOC曲线簇的磷酸铁锂电池SOC估算研究[J]. 电源技术, 2019, 43(7): 1125-1128, 1139.
|
|
GUO B F, ZHANG P, WANG W X, et al. Research on SOC estimation of LiFePO4 battery based on OCV-SOC curve cluster[J]. Chinese Journal of Power Sources, 2019, 43(7): 1125-1128, 1139.
|
6 |
QAYS M O, BUSWIG Y, HOSSAIN M L, et al. Recent progress and future trends on the state of charge estimation methods to improve battery-storage efficiency: A review[J]. CSEE Journal of Power and Energy Systems, 2020, 8(1): 105-114.
|
7 |
HIDALGO-REYES J I, GÓMEZ-AGUILAR J F, ALVARADO-MARTÍNEZ V M, et al. Battery state-of-charge estimation using fractional extended Kalman filter with Mittag-Leffler memory[J]. Alexandria Engineering Journal, 2020, 59(4): 1919-1929.
|
8 |
张武, 孙士山, 张家福. 基于自适应无迹卡尔曼滤波的动力电池SOC估计[J]. 电源技术, 2021, 45(1): 14-17.
|
|
ZHANG W, SUN S S, ZHANG J F. SOC estimation of power batteries based on adaptive unscented Kalman filter[J]. Chinese Journal of Power Sources, 2021, 45(1): 14-17.
|
9 |
CHEN J, OUYANG Q, XU C F, et al. Neural network-based state of charge observer design for lithium-ion batteries[J]. IEEE Transactions on Control Systems Technology, 2018, 26(1): 313-320.
|
10 |
苏振浩, 李晓杰, 秦晋, 等. 基于BP人工神经网络的动力电池SOC估算方法[J]. 储能科学与技术, 2019, 8(5): 868-873.
|
|
SU Z H, LI X J, QIN J, et al. SOC estimation method of power battery based on BP artificial neural network[J]. Energy Storage Science and Technology, 2019, 8(5): 868-873.
|
11 |
骆秀江, 张兵, 黄细霞, 等. 基于SVM的锂电池SOC估算[J]. 电源技术, 2016, 40(2): 287-290.
|
|
LUO X J, ZHANG B, HUANG X X, et al. Estimation of lithium battery SOC based on SVM[J]. Chinese Journal of Power Sources, 2016, 40(2): 287-290.
|
12 |
LI Y W, WANG C, GONG J F. A combination Kalman filter approach for state of charge estimation of lithium-ion battery considering model uncertainty[J]. Energy, 2016, 109: 933-946.
|
13 |
ZHANG S W, SUN H, LYU C. A method of SOC estimation for power Li-ion batteries based on equivalent circuit model and extended Kalman filter[C]//2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA). May 31-June 2, 2018, Wuhan, China. IEEE, 2018: 2683-2687.
|
14 |
董祥祥, 武鹏, 葛传久, 等. 基于自适应无迹卡尔曼滤波的锂电池荷电状态估计[J]. 电工电能新技术, 2021, 40(2): 58-65.
|
|
DONG X X, WU P, GE C J, et al. State of charge estimation of Li-ion battery based on adaptive unscented Kalman filter[J]. Advanced Technology of Electrical Engineering and Energy, 2021, 40(2): 58-65.
|
15 |
HANNAN M A, LIPU M S H, HUSSAIN A, et al. Neural network approach for estimating state of charge of lithium-ion battery using backtracking search algorithm[J]. IEEE Access, 2018, 6: 10069-10079.
|
16 |
王帅, 马鸿雁, 窦嘉铭, 等. 基于UGOA-BP的锂电池SOC估算[J]. 储能科学与技术, 2022, 11(1): 258-264.
|
|
WANG S, MA H Y, DOU J M, et al. Estimation of lithium-ion battery state of charge based on UGOA-BP[J]. Energy Storage Science and Technology, 2022, 11(1): 258-264.
|