储能科学与技术 ›› 2023, Vol. 12 ›› Issue (3): 899-912.doi: 10.19799/j.cnki.2095-4239.2022.0694
李奎杰1(), 楼平2, 管敏渊2, 莫金龙2,3, 张炜鑫1, 曹元成1(), 程时杰1
收稿日期:
2022-11-23
修回日期:
2022-12-04
出版日期:
2023-03-05
发布日期:
2023-04-14
通讯作者:
曹元成
E-mail:KuijieLi@163.com;yccao@hust.edu.cn
作者简介:
李奎杰(1996—),男,博士研究生,研究方向为储能电池安全管理,E-mail:KuijieLi@163.com;
基金资助:
Kuijie LI1(), Ping LOU2, Minyuan GUAN2, Jinlong MO2,3, Weixin ZHANG1, Yuancheng CAO1(), Shijie CHENG1
Received:
2022-11-23
Revised:
2022-12-04
Online:
2023-03-05
Published:
2023-04-14
Contact:
Yuancheng CAO
E-mail:KuijieLi@163.com;yccao@hust.edu.cn
摘要:
锂离子电池热失控问题是当前电化学储能电站安全的核心问题。准确详尽地掌握电池热失控过程是实现储能电站主动安全预警的前提。然而,锂离子电池是具有复杂非线性特性的电化学系统,其热失控过程将在多维物理场上表现出不同的信号特征,现有仅靠电压和温度等外特性信号的电池管理系统难以全面客观地监测电池的安全健康状态。因此,研究电池热失控过程中多维信号的演变及耦合机制具有重要意义。本文系统综述了锂离子电池热失控过程中的热、电、机械和气体四个维度的特征信号的演变规律,分析不同维度物理场信号之间的耦合特征,并展望基于多维传感信号融合的电池主动安全预警技术在储能电站的应用。
中图分类号:
李奎杰, 楼平, 管敏渊, 莫金龙, 张炜鑫, 曹元成, 程时杰. 锂离子电池热失控多维信号演化及耦合机制研究综述[J]. 储能科学与技术, 2023, 12(3): 899-912.
Kuijie LI, Ping LOU, Minyuan GUAN, Jinlong MO, Weixin ZHANG, Yuancheng CAO, Shijie CHENG. A review of multi-dimensional signal evolution and coupling mechanism of lithium-ion battery thermal runaway[J]. Energy Storage Science and Technology, 2023, 12(3): 899-912.
1 | 康重庆, 杜尔顺, 李姚旺, 等. 新型电力系统的"碳视角": 科学问题与研究框架[J]. 电网技术, 2022, 46(3): 821-833. |
KANG C Q, DU E S, LI Y W, et al. Key scientific problems and research framework for carbon perspective research of new power systems[J]. Power System Technology, 2022, 46(3): 821-833. | |
2 | 周芳, 刘思, 侯敏. 锂电池技术在储能领域的应用与发展趋势[J]. 电源技术, 2019, 43(2): 348-350. |
ZHOU F, LIU S, HOU M. Application and development tendency of lithium battery technology in energy storage field[J]. Chinese Journal of Power Sources, 2019, 43(2): 348-350. | |
3 | 缪平, 姚祯, JOHN L, 等. 电池储能技术研究进展及展望[J]. 储能科学与技术, 2020, 9(3): 670-678. |
MIAO P, YAO Z, JOHN L, et al. Current situations and prospects of energy storage batteries[J]. Energy Storage Science and Technology, 2020, 9(3): 670-678. | |
4 | 国家电网公司"电网新技术前景研究"项目咨询组, 王松岑, 来小康, 等. 大规模储能技术在电力系统中的应用前景分析[J]. 电力系统自动化, 2013, 37(1): 3-8, 30. |
Consulting Group of State Grid Corporation of China to Prospects of New Technologies in Power Systems, WANG S C, LAI X K, et al. An analysis of prospects for application of large-scale energy storage technology in power systems[J]. Automation of Electric Power Systems, 2013, 37(1): 3-8, 30. | |
5 | 杜炜凝, 周杨, 于晓蒙, 等. 基于锂离子电池储能系统的消防安全技术研究[J]. 供用电, 2020, 37(2): 34-40. |
DU W N, ZHOU Y, YU X M, et al. Research on fire safety technology of energy storage system based on lithium-ion battery[J]. Distribution & Utilization, 2020, 37(2): 34-40. | |
6 | WANG Q S, MAO B B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131. |
7 | XU B, LEE J, KWON D, et al. Mitigation strategies for Li-ion battery thermal runaway: A review[J]. Renewable and Sustainable Energy Reviews, 2021, 150: doi: 10.1016/j.rser.2021.111437. |
8 | 冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京: 清华大学, 2016. |
FENG X N. Thermal runaway initiation and propagation of lithium-ion traction battery for electric vehicle: Test, modeling and prevention[D]. Beijing: Tsinghua University, 2016. | |
9 | FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. |
10 | FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. |
11 | HOSSAIN LIPU M S, HANNAN M A, KARIM T F, et al. Intelligent algorithms and control strategies for battery management system in electric vehicles: Progress, challenges and future outlook[J]. Journal of Cleaner Production, 2021, 292: doi: 10.1016/j.jclepro.2021.126044. |
12 | TANG H, WU Y C, CAI Y F, et al. Design of power lithium battery management system based on digital twin[J]. Journal of Energy Storage, 2022, 47: doi: 10.1016/j.est.2021.103679. |
13 | 李煌. 三元锂离子电池热失控传播及阻隔机制研究[D]. 合肥: 中国科学技术大学, 2020. |
LI H. Research on the thermal runaway propagation and its mitigation mechanism of ternary lithium ion battery[D]. Hefei: University of Science and Technology of China, 2020. | |
14 | WANG Y, REN D S, FENG X N, et al. Thermal runaway modeling of large format high-nickel/silicon-graphite lithium-ion batteries based on reaction sequence and kinetics[J]. Applied Energy, 2022, 306: doi 10.1016/j.apenergy.2021.117943. |
15 | 宋来丰, 梅文昕, 贾壮壮, 等. 绝热条件下280 Ah大型磷酸铁锂电池热失控特性分析[J]. 储能科学与技术, 2022, 11(8): 2411-2417. |
SONG L F, MEI W X, JIA Z Z, et al. Analysis of thermal runaway characteristics of 280 Ah large LiFePO4 battery under adiabatic conditions[J]. Energy Storage Science and Technology, 2022, 11(8): 2411-2417. | |
16 | 刘洋, 陶风波, 孙磊, 等. 磷酸铁锂储能电池热失控及其内部演变机制研究[J]. 高电压技术, 2021, 47(4): 1333-1343. |
LIU Y, TAO F B, SUN L, et al. Research of thermal runaway and internal evolution mechanism of lithium iron phosphate energy storage battery[J]. High Voltage Engineering, 2021, 47(4): 1333-1343. | |
17 | 朱鸿章, 吴传平, 周天念, 等. 磷酸铁锂和三元锂电池外部过热条件下的热失控特性[J]. 储能科学与技术, 2022, 11(1): 201-210. |
ZHU H Z, WU C P, ZHOU T N, et al. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating[J]. Energy Storage Science and Technology, 2022, 11(1): 201-210. | |
18 | 尹涛, 贾隆舟, 常修亮, 等. 软包磷酸铁锂电池高电压浮充后热安全研究[J]. 储能科学与技术, 2022, 11(8): 2546-2555. |
YIN T, JIA L Z, CHANG X L, et al. Research on thermal safety of soft-pack LiFePO4 battery after high-voltage float charge[J]. Energy Storage Science and Technology, 2022, 11(8): 2546-2555. | |
19 | 黄德扬, 陈自强, 郑昌文. 时变温度环境下锂离子电池自适应SOC估计方法[J]. 装备环境工程, 2018, 15(12): 28-34. |
HUANG D Y, CHEN Z Q, ZHENG C W. SOC adaptive estimation method for Li-ion battery applied in temperature-varying condition[J]. Equipment Environmental Engineering, 2018, 15(12): 28-34. | |
20 | 张明轩, 冯旭宁, 欧阳明高, 等. 三元锂离子动力电池针刺热失控实验与建模[J]. 汽车工程, 2015, 37(7): 743-750, 756. |
ZHANG M X, FENG X N, OUYANG M G, et al. Experiments and modeling of nail penetration thermal runaway in a NCM Li-ion power battery[J]. Automotive Engineering, 2015, 37(7): 743-750, 756. | |
21 | E J, ZHANG B, ZENG Y, et al. Effects analysis on active equalization control of lithium-ion batteries based on intelligent estimation of the state-of-charge[J]. Energy, 2022, 238: doi: 10.1016/j.energy.2021.121822. |
22 | WANG Z R, HE T F, BIAN H, et al. Characteristics of and factors influencing thermal runaway propagation in lithium-ion battery packs[J]. Journal of Energy Storage, 2021, 41: doi: 10.1016/j.est.2021.102956. |
23 | FANG J, CAI J N, HE X Z. Experimental study on the vertical thermal runaway propagation in cylindrical lithium-ion batteries: Effects of spacing and state of charge[J]. Applied Thermal Engineering, 2021, 197: doi: 10.1016/j.applthermaleng.2021.117399. |
24 | HUANG L W, ZHANG Z S, WANG Z P, et al. Thermal runaway behavior during overcharge for large-format lithium-ion batteries with different packaging patterns[J]. Journal of Energy Storage, 2019, 25: doi: 10.1016/j.est.2019.100811. |
25 | HUANG Z H, ZHAO C P, LI H, et al. Experimental study on thermal runaway and its propagation in the large format lithium ion battery module with two electrical connection modes[J]. Energy, 2020, 205: doi: 10.1016/j.energy.2020.117906. |
26 | 陈欣蕊, 谭立志, 赵彦民, 等. 磷酸铁锂电池循环老化后不同SOC状态热特性研究[J]. 电源技术, 2021, 45(7): 877-880. |
CHEN X R, TAN L Z, ZHAO Y M, et al. Thermal characteristics of lithium-iron phosphate batteries under different SOCs after cycles[J]. Chinese Journal of Power Sources, 2021, 45(7): 877-880. | |
27 | KOCH S, FILL A, KELESIADOU K, et al. Discharge by short circuit currents of parallel-connected lithium-ion cells in thermal propagation[J]. Batteries, 2019, 5(1): doi: 10.3390/batteries5010018. |
28 | HUANG Z H, LIU J L, ZHAI H J, et al. Experimental investigation on the characteristics of thermal runaway and its propagation of large-format lithium ion batteries under overcharging and overheating conditions[J]. Energy, 2021, 233: doi: 10.1016/j.energy.2021.121103. |
29 | 黎瑞和. 锂离子电池全生命周期形变的机理、影响及应用[D]. 北京: 清华大学, 2020. |
LI R H. Deformation of lithium ion battery during the whole life cycle: Mechanism, effects and application[D]. Beijing: Tsinghua University, 2020. | |
30 | PANNALA S, ZHANG M X, SIEGEL J B, et al. Mechanical measurements for early detection of thermal runaway induced by an internal short circuit[J]. ECS Meeting Abstracts, 2018, (3): 368. |
31 | 刘伯峥, 曹六阳, 曾涛, 等. 束缚力对磷酸铁锂电池安全性影响[J]. 储能科学与技术, 2022, 11(8): 2556-2563. |
LIU B Z, CAO L Y, ZENG T, et al. Effect of the binding force on the safety of LiFePO4 cells[J]. Energy Storage Science and Technology, 2022, 11(8): 2556-2563. | |
32 | ZHANG C, SANTHANAGOPALAN S, SPRAGUE M A, et al. Coupled mechanical-electrical-thermal modeling for short-circuit prediction in a lithium-ion cell under mechanical abuse[J]. Journal of Power Sources, 2015, 290: 102-113. |
33 | BAI J L, WANG Z R, GAO T F, et al. Effect of mechanical extrusion force on thermal runaway of lithium-ion batteries caused by flat heating[J]. Journal of Power Sources, 2021, 507: doi: 10.1016/j.jpowsour.2021.230305. |
34 | 刘冰河. 锂离子电池机械完整性多场耦合机理研究[D]. 北京航空航天大学, 2019. |
LIU B H. Study of multi-physics mechanism of mechanical integrity for lithium ion battery[D]. Beijing: Beihang University, 2019. | |
35 | 石爽, 吕娜伟, 马敬轩, 等. 不同类型气体探测对磷酸铁锂电池储能舱过充安全预警有效性对比[J]. 储能科学与技术, 2022, 11(8): 2452-2462. |
SHI S, LYU N W, MA J X, et al. Comparative study on the effectiveness of different types of gas detection on the overcharge safety early warning of a lithium iron phosphate battery energy storage compartment[J]. Energy Storage Science and Technology, 2022, 11(8): 2452-2462. | |
36 | JIN Y, ZHENG Z K, WEI D H, et al. Detection of micro-scale Li dendrite via H2 gas capture for early safety warning[J]. Joule, 2020, 4(8): 1714-1729. |
37 | FINEGAN D P, SCHEEL M, ROBINSON J B, et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway[J]. Nature Communications, 2015, 6: doi: 10.1038/ncomms7924. |
38 | GOLUBKOV A W, FUCHS D, WAGNER J, et al. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes[J]. RSC Advances, 2014, 4(7): 3633-3642. |
39 | OSTANEK J K, LI W S, MUKHERJEE P P, et al. Simulating onset and evolution of thermal runaway in Li-ion cells using a coupled thermal and venting model[J]. Applied Energy, 2020, 268: doi: 10.1016/j.apenergy.2020.114972. |
40 | JINYONG K, ANUDEEP M, FINEGAN DONAL P, et al. Modeling cell venting and gas-phase reactions in 18650 lithium ion batteries during thermal runaway[J]. Journal of Power Sources, 2021, 489: doi: 10.1016/j.jpowsour.2021.229496. |
41 | FERNANDES Y, BRY A, DE PERSIS S. Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery[J]. Journal of Power Sources, 2018, 389: 106-119. |
42 | ZHANG Y J, WANG H W, LI W F, et al. Quantitative identification of emissions from abused prismatic Ni-rich lithium-ion batteries[J]. eTransportation, 2019, 2: doi: 10.1016/j.etran.2019.100031. |
43 | 姜久春, 高洋, 张彩萍, 等. 电动汽车锂离子动力电池健康状态在线诊断方法[J]. 机械工程学报, 2019, 55(20): 60-72, 84. |
JIANG J C, GAO Y, ZHANG C P, et al. Online diagnostic method for health status of lithium-ion battery in electric vehicle[J]. Journal of Mechanical Engineering, 2019, 55(20): 60-72, 84. | |
44 | 于子轩, 孟国栋, 谢小军, 等. 磷酸铁锂储能电池过充热失控仿真研究[J]. 电气工程学报, 2022, 17(3): 30-39. |
YU Z X, MENG G D, XIE X J, et al. Simulation research on overcharge thermal runaway of lithium iron phosphate energy storage battery[J]. Journal of Electrical Engineering, 2022, 17(3): 30-39. | |
45 | WANG H, LARA-CURZIO E, RULE E T, et al. Mechanical abuse simulation and thermal runaway risks of large-format Li-ion batteries[J]. Journal of Power Sources, 2017, 342: 913-920. |
46 | WANG Y, FENG X N, PENG Y, et al. Reductive gas manipulation at early self-heating stage enables controllable battery thermal failure[J]. Joule, 2022, 6(12): 2810-2820. |
47 | ARAI H, TSUDA M, SAITO K, et al. Thermal reactions between delithiated lithium nickelate and electrolyte solutions[J]. Journal of the Electrochemical Society, 2002, 149(4): doi: 10.1149/1.1452114. |
48 | 黄峥, 秦鹏, 石晗, 等. 过热条件下86 Ah磷酸铁锂电池热失控行为研究[J]. 高电压技术, 2022, 48(3): 1185-1191. |
HUANG Z, QIN P, SHI H, et al. Study on thermal runaway behavior of 86 Ah lithium iron phosphate battery under overheat condition[J]. High Voltage Engineering, 2022, 48(3): 1185-1191. | |
49 | ABD-EL-LATIF A A, SICHLER P, KASPER M, et al. Insights into thermal runaway of Li-ion cells by accelerating rate calorimetry coupled with external sensors and online gas analysis[J]. Batteries & Supercaps, 2021, 4(7): 1135-1144. |
50 | KRISTON A, ADANOUJ I, RUIZ V, et al. Quantification and simulation of thermal decomposition reactions of Li-ion battery materials by simultaneous thermal analysis coupled with gas analysis[J]. Journal of Power Sources, 2019, 435: doi: 10.1016/j.jpowsour.2019.226774. |
51 | 尹康涌, 陶风波, 梁伟, 等. 双层结构预制舱式磷酸铁锂储能电站热失控气体爆炸模拟[J]. 储能科学与技术, 2022, 11(8): 2488-2496. |
YIN K Y, TAO F B, LIANG W, et al. Simulation of thermal runaway gas explosion in double-layer prefabricated cabin lithium iron phosphate energy storage power station[J]. Energy Storage Science and Technology, 2022, 11(8): 2488-2496. | |
52 | 辛耀达, 李娜, 杨乐, 等. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
XIN Y D, LI N, YANG L, et al. Integrated sensing technology for lithium ion battery[J]. Energy Storage Science and Technology, 2022, 11(6): 1834-1846. | |
53 | QIN P, SUN J H, WANG Q S. A new method to explore thermal and venting behavior of lithium-ion battery thermal runaway[J]. Journal of Power Sources, 2021, 486: doi: 10.1016/j.jpowsour.2020.229357. |
54 | CAI T, STEFANOPOULOU A G, SIEGEL J B. Modeling Li-ion battery temperature and expansion force during the early stages of thermal runaway triggered by internal shorts[J]. Journal of the Electrochemical Society, 2019, 166(12): doi: 10.1149/2.1561910jes. |
55 | CAI T, MOHTAT P, STEFANOPOULOU A G, et al. Li-ion battery fault detection in large packs using force and gas sensors[J]. IFAC-PapersOnLine, 2020, 53(2): 12491-12496. |
56 | KOCH S, BIRKE K, KUHN R. Fast thermal runaway detection for lithium-ion cells in large scale traction batteries[J]. Batteries, 2018, 4(2): doi: 10.3390/batteries4020016. |
[1] | 姚逸鸣, 栾伟玲, 陈莹, 孙敏. 基于光学显微镜的锂离子电池材料老化衰减原位研究进展[J]. 储能科学与技术, 2023, 12(3): 777-791. |
[2] | 封迈, 陈楠, 陈人杰. 锂离子电池低温电解液的研究进展[J]. 储能科学与技术, 2023, 12(3): 792-807. |
[3] | 常修亮, 李希超, 贾隆舟, 韦守李, 王敬豪, 戴作强, 郑莉莉. 过充循环老化电池产热特性[J]. 储能科学与技术, 2023, 12(3): 685-697. |
[4] | 刘树港, 蒙波, 李政隆, 杨亚雄, 陈建. Li x (Mg, Ni, Zn, Cu, Co) 1-x O高熵氧化物负极材料电化学储锂特性[J]. 储能科学与技术, 2023, 12(3): 743-753. |
[5] | 王志福, 罗崴, 闫愿, 徐崧, 郝文美, 周聪林. 基于GAPSO-FNN神经网络的锂离子电池传感器故障诊断[J]. 储能科学与技术, 2023, 12(2): 602-608. |
[6] | 张德柳, 张言, 王海, 王佳东, 高宣雯, 刘朝孟, 杨东润, 骆文彬. 镁掺杂协同氧化铝包覆优化锂离子电池高镍正极材料[J]. 储能科学与技术, 2023, 12(2): 339-348. |
[7] | 杨帆, 和嘉睿, 陆鸣, 陆玲霞, 于淼. 基于BP-UKF算法的锂离子电池SOC估计[J]. 储能科学与技术, 2023, 12(2): 552-559. |
[8] | 张慧敏, 王京, 王一博, 郑家新, 邱景义, 曹高萍, 张浩. 锂离子电池SEI多尺度建模研究展望[J]. 储能科学与技术, 2023, 12(2): 366-382. |
[9] | 朱文凯, 周星, 刘亚杰, 张涛, 宋元明. 基于递推门控循环单元神经网络的锂离子电池荷电状态实时估计方法[J]. 储能科学与技术, 2023, 12(2): 570-578. |
[10] | 张玉龙, 栾伟玲, 吴森明. 基于外特性方法的锂离子电池析锂及可逆锂回嵌定量分析[J]. 储能科学与技术, 2023, 12(2): 529-535. |
[11] | 王放放, 冯祥明, 赵光金, 夏大伟, 胡玉霞, 陈卫华. 电化学阻抗谱识别不同化学体系退役动力锂离子电池[J]. 储能科学与技术, 2023, 12(2): 609-614. |
[12] | 郑瀚, 来沛霈, 田晓华, 孙卓, 张哲娟. 多级碳复合的大尺寸硅颗粒在锂离子电池负极中的性能[J]. 储能科学与技术, 2023, 12(1): 23-34. |
[13] | 何骁龙, 石晓龙, 王子阳, 韩路豪, 姚斌. 过充、过热及其共同作用下车用三元锂离子电池热失控特性[J]. 储能科学与技术, 2023, 12(1): 218-226. |
[14] | 邓林旺, 冯天宇, 舒时伟, 郭彬, 张子峰. 锂离子电池无损析锂检测研究进展[J]. 储能科学与技术, 2023, 12(1): 263-277. |
[15] | 韩江浩, 王晓丹, 李奇松, 李慧芳, 王睿, 许刚. 锂离子电池加速循环测试研究[J]. 储能科学与技术, 2023, 12(1): 255-262. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||