1 |
GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176.
|
2 |
高鹏, 张珊, 贲留斌, 等. 铌元素在锂离子电池中的应用[J]. 储能科学与技术, 2020, 9(5): 1443-1453.
|
|
GAO P, ZHANG S, BEN L, et al. Application of niobium in lithium ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1443-1453.
|
3 |
刘柏男, 徐泉, 禇赓, 等. 锂离子电池高容量硅碳负极材料研究进展[J]. 储能科学与技术, 2016, 5(4): 417-421.
|
|
LIU B, XU Q, CHU G, et al. Research progress on the nano-Si/C materials with high capacity for lithium-iom battery[J]. Energy Storage Science and Technology, 2016, 5(4): 417-421.
|
4 |
HUANG Z X, WANG Y, ZHU Y G, et al. 3D graphene supported MoO2 for high performance binder-free lithium ion battery[J]. Nanoscale, 2014, 6(16): 9839-9845.
|
5 |
XU H, ZHANG H, FANG L, et al. Hierarchical molybdenum nitride nanochexes by a textured self-assembly in gas-solid phase for the enhanced application in lithium-ion batteries[J]. ACS Nano, 2015, 9(7): 6817-6825.
|
6 |
LIU X, ZHAO Y, DONG Y, et al. Synthesis of carbon-coated nanoplate α-Na2MoO4 and its electrochemical lithiation process as anode material for lithium-ion batteries[J]. Electrochimica Acta, 2015, 154: 94-101.
|
7 |
CHEN N, GAO Y, ZHANG M, et al. Electrochemical properties and sodium-storage mechanism of Ag2Mo2O7 as the anode material for sodium-ion batteries[J]. Chemistry-A European Journal, 2016, 22(21): 7248-7254.
|
8 |
VERMA R, RAMANUJAM K, VARADARAJU U V. Nano-crystalline Na2Mo2O7: A new high performance anode material[J]. Electrochimica Acta, 2016, 215: 192-199.
|
9 |
SHARMA N, SHAJU K, SUBBA RAO G V, et al. Carbon-coated nanophase CaMoO4 as anode material for lithium-ion batteries[J]. Chemistry of Materials, 2004, 16(3): 504-512.
|
10 |
ZHANG J, LI R, CHEN Q, et al. Porous carbon coated Li2MoO4 as high-performance anode materials for lithium-ion batteries[J]. Materials Letters, 2018, 233: 302-305.
|
11 |
SHANTHAPPA R, NARSIMULU D, KAKARLA A K, et al. Nitrogen-doped reduced graphene oxide incorporated porous rod-like cobalt molybdate as an anode for high-capacity long-life lithium-ion batteries[J]. International Journal of Energy Research, 2021, 45(13): 19509-19520.
|
12 |
DENIS D K, WANG G, HOU L, et al. Construction of conductive Ni-Co-Molybdate solid solution nanoparticles encapsulated in carbon nanofibers towards Li-ion batteries as high-rate anodes[J]. Electrochimica Acta, 2022, 402: 139564.
|
13 |
BUHRMESTER T, LEYZEROVICH N N, BRAMNIK K G, et al. Electrochemical intercalation of lithium in ternary metal molybdates MMoO4 (M=Cu, Zn)[J]. Materials Research Society Symposium Proceedings, 2003, 756: 261-266.
|
14 |
ZAKARIA M B, LI C, JI Q, et al. Self-construction from 2D to 3D: one-pot layer-by-layer assembly of graphene oxide sheets held together by coordination polymers[J]. Angewandte Chemie International Edition, 2016, 55(29): 8426-8430.
|
15 |
ARIGA K, NISHIKAWA M, MORI T, et al. Self-assembly as a key player for materials nano-architectonics[J]. Science and Technology of Advanced Materials, 2019, 20(1): 51-95.
|
16 |
JIA Y, LI J. Molecular assembly of Schiff Base interactions: Construction and application[J]. Chemical Reviews, 2015, 115(3): 1597-1621.
|
17 |
LI S, HUANG J G. Cellulose-rich nanofiber-based functional nanoarchitectures[J]. Advanced Materials, 2016, 28(6): 1143-1158.
|
18 |
LIN Z H, HUANG J G. Hierarchical nanostructures derived from cellulose for lithium-ion batteries[J]. Dalton Transactions, 2019, 48(38): 14221-14232.
|
19 |
LIN Z H, LI S, HUANG J G. Natural cellulose derived nanocomposites as anodic materials for lithium-ion batteries[J]. Chemical Record, 2020, 20(3): 187-208.
|
20 |
LIU X Y, GU Y Q, HUANG J G, Hierarchical, titania-coated, carbon nanofibrous material derived from a natural cellulosic substance[J]. Chemistry-A European Journal, 2010, 16(26): 7730-7740.
|
21 |
MANIVANNAN A, PUNNOOSE A, SEEHRA M S, Interaction of oxygen with nanophase carbons investigated by electron spin resonance spectroscopy[J]. Materials Research Society Symposium Proceedings, 1999, 593: 365-370.
|
22 |
TAN W C, LUAN J F. Investigation into the synthesis conditions of CuMoO4 by an in situ method and its photocatalytic properties under visible light irradiation[J]. RSC Advances, 2020, 10(16): 9745-9759.
|
23 |
PARK S K, LEE J, BONG S, et al. Scalable synthesis of few-layer MoS2 incorporated into hierarchical porous carbon nanosheets for high-performance Li-and Na-ion battery anodes[J]. ACS Applied Materials & Interfaces, 2016, 8(30): 19456-19465.
|
24 |
LI Y F, HU Y J, SHEN J H, et al. Rapid flame synthesis of internal Mo6+ doped TiO2 nanocrystals in situ decorated with highly dispersed MoO3 clusters for lithium ion storage[J]. Nanoscale, 2015, 7(44): 18603-18611.
|
25 |
HUANG J G, ICHINOSE I, KUNITAKE T, et al. Preparation of nanoporous titania films by surface sol-gel process accompanied by low-temperature oxygen plasma treatment[J]. Langmuir, 2002, 18(23): 9048-9053.
|
26 |
COTTE S, PELÉ V, PECQUENARD B, et al. Iron molybdate thin films prepared by sputtering and their electrochemical behavior in Li batteries[J]. Journal of Alloys and Compounds, 2018, 735: 1454-1462.
|
27 |
MA F X, WANG P P, XU C Y, et al. Synthesis of self-stacked CuFe2O4-Fe2O3 porous nanosheets as a high performance Li-ion battery anode[J]. Journal of Materials Chemistry A, 2014, 2(45): 19330-19337.
|
28 |
LI J C, FENG F, YANG S H, et al. Promising electrochemical performance of Cu3Mo2O9 nanorods for lithium-ion batteries[J]. Journal of Materials Science, 2017, 52(20): 12380-12389.
|
29 |
CHERIAN T C, REDDY M V, HAUR S C, et al. Interconnected network of CoMoO4 submicrometer particles as high capacity anode material for lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2013, 5(3): 918-923.
|
30 |
ETTE P M, CHITAMBARARAJ A, PRAKASH A S. et al. MoS2 nanoflower-derived interconnected CoMoO4 nanoarchitectures as a stable and high rate performing anode for lithium-ion battery applications[J]. ACS Applied Materials & Interfaces, 2020, 12(10): 11511-11521.
|