1 |
FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267.
|
2 |
BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12.
|
3 |
THOMAS K E, NEWMAN J. Thermal modeling of porous insertion electrodes[J]. Journal of the Electrochemical Society, 2003, 150(2): doi: 10.1149/1.1531194.
|
4 |
HU X S, LI S B, PENG HUEI. A comparative study of equivalent circuit models for Li-ion batteries[J]. Journal of Power Sources, 2012, 198: 359-367.
|
5 |
BABA N, YOSHIDA H, NAGAOKA M, et al. Numerical simulation of thermal behavior of lithium-ion secondary batteries using the enhanced single particle model[J]. Journal of Power Sources, 2014, 252: 214-228.
|
6 |
DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526-1533.
|
7 |
李夔宁, 谢运成, 谢翌, 等. 基于电化学热耦合模型的富镍锂离子电池产热分析[J]. 储能科学与技术, 2021, 10(3): 1153-1162.
|
|
LI K N, XIE Y C, XIE Y, et al. Analysis of heat production of nickel-rich lithium-ion battery based on electrochemical thermal coupling model[J]. Energy Storage Science and Technology, 2021, 10(3): 1153-1162.
|
8 |
LYU P Z, HUO Y T, QU Z G, et al. Investigation on the thermal behavior of Ni-rich NMC lithium-ion battery for energy storage[J]. Applied Thermal Engineering, 2020, 166: doi: 10.1016/j.applthermaleng.2019.114749.
|
9 |
DU S L, LAI Y Q, AI L A, et al. An investigation of irreversible heat generation in lithium ion batteries based on a thermo-electrochemical coupling method[J]. Applied Thermal Engineering, 2017, 121: 501-510.
|
10 |
张志超, 郑莉莉, 杜光超, 等. 基于多尺度锂离子电池电化学及热行为仿真实验研究[J]. 储能科学与技术, 2020, 9(1): 124-130.
|
|
ZHANG Z C, ZHENG L L, DU G C, et al. Electrochemical and thermal behavior simulation experiments based on multiscale lithium ion batteries[J]. Energy Storage Science and Technology, 2020, 9(1): 124-130.
|
11 |
韦雪晴, 邓海鹏, 周宇, 等. 锂离子电池组的三维电化学-热耦合仿真分析[J]. 储能科学与技术, 2022, 11(12): 3965-3977.
|
|
WEI X Q, DENG H P, ZHOU Y, et al. Three-dimensional electrochemical-thermal coupling simulation analysis of lithium ion battery pack[J]. Energy Storage Science and Technology, 2022, 11(12): 3965-3977.
|
12 |
FANG R Q, GE H, WANG Z H, et al. A two-dimensional heterogeneous model of lithium-ion battery and application on designing electrode with non-uniform porosity[J]. Journal of the Electrochemical Society, 2020, 167(13): doi: 10.1149/1945-7111/abb83a.
|
13 |
LIU S B, ZHANG H Y, XU X B. A study on the transient heat generation rate of lithium-ion battery based on full matrix orthogonal experimental design with mixed levels[J]. Journal of Energy Storage, 2021, 36: doi: 10.1016/j.est.2021.102446.
|
14 |
FARAG M, SWEITY H, FLECKENSTEIN M, et al. Combined electrochemical, heat generation, and thermal model for large prismatic lithium-ion batteries in real-time applications[J]. Journal of Power Sources, 2017, 360: 618-633.
|
15 |
LI J E, CHENG Y, AI L H, et al. 3D simulation on the internal distributed properties of lithium-ion battery with planar tabbed configuration[J]. Journal of Power Sources, 2015, 293: 993-1005.
|
16 |
LI H H, SAINI A, LIU C Y, et al. Electrochemical and thermal characteristics of prismatic lithium-ion battery based on a three-dimensional electrochemical-thermal coupled model[J]. Journal of Energy Storage, 2021, 42: doi: 10.1016/j.est.2021.102976.
|
17 |
云凤玲. 高比能量锂离子动力电池热性能及电化学-热耦合行为的研究[D]. 北京: 北京有色金属研究总院, 2016.
|
18 |
BAHIRAEI F, GHALKHANI M, FARTAJ A, et al. A pseudo 3D electrochemical-thermal modeling and analysis of a lithium-ion battery for electric vehicle thermal management applications[J]. Applied Thermal Engineering, 2017, 125: 904-918.
|
19 |
DONG T, PENG P, JIANG F M. Numerical modeling and analysis of the thermal behavior of NCM lithium-ion batteries subjected to very high C-rate discharge/charge operations[J]. International Journal of Heat and Mass Transfer, 2018, 117: 261-272.
|
20 |
VALO̸EN L O, REIMERS J N. Transport properties of LiPF6-based Li-ion battery electrolytes[J]. Journal of the Electrochemical Society, 2005, 152(5): doi: 10.1149/1.1872737.
|
21 |
DOYLE M, NEWMAN J, GOZDZ A S, et al. Comparison of modeling predictions with experimental data from plastic lithium ion cells[J]. Journal of the Electrochemical Society, 1996, 143(6): 1890-1903.
|
22 |
WU W, XIAO X R, HUANG X S. The effect of battery design parameters on heat generation and utilization in a Li-ion cell[J]. Electrochimica Acta, 2012, 83: 227-240.
|
23 |
XU X B, ZHANG H Y, LIU S B, et al. Surrogate models for lithium-ion battery heat generation based on orthogonal experiments by eliminating external wire connection effect[J]. Applied Thermal Engineering, 2022, 213: doi: 10.1016/j.applthermaleng.2022.118655.
|
24 |
吴青余, 张恒运, 李俊伟. 校准量热法测量锂电池比热容和生热率[J]. 汽车工程, 2020, 42(1): 59-65.
|
|
WU Q Y, ZHANG H Y, LI J W. Calibrated calorimetry for measuring the specific heat capacity and heat generation rate of lithium-ion battery[J]. Automotive Engineering, 2020, 42(1): 59-65.
|
25 |
JI Y, ZHANG Y C, WANG C Y. Li-ion cell operation at low temperatures[J]. Journal of the Electrochemical Society, 2013, 160(4): doi: 10.1149/2.047304jes.
|