储能科学与技术 ›› 2023, Vol. 12 ›› Issue (5): 1392-1408.doi: 10.19799/j.cnki.2095-4239.2023.0254
• 喜迎东北大学建校百年-储能电池关键材料与循环技术专刊 • 上一篇 下一篇
收稿日期:
2023-03-21
修回日期:
2023-04-22
出版日期:
2023-05-05
发布日期:
2023-05-29
通讯作者:
高宣雯
E-mail:2271862@stu.neu.edu.cn;gaoxuanwen@mail.neu.edu.cn
作者简介:
周俊龙(2001—),男,硕士研究生,研究方向为碱金属离子电池负极材料,E-mail:2271862@stu.neu.edu.cn;
基金资助:
Junlong ZHOU(), Lukang ZHAO, Zhaomeng LIU, Xuanwen GAO(), Wenbin LUO
Received:
2023-03-21
Revised:
2023-04-22
Online:
2023-05-05
Published:
2023-05-29
Contact:
Xuanwen GAO
E-mail:2271862@stu.neu.edu.cn;gaoxuanwen@mail.neu.edu.cn
摘要:
负极材料作为碱金属离子电池的重要组成部分,对电池的性能有着巨大的影响。传统的负极材料如石墨,由于比容量低很难满足未来对储能的需求。因此,寻找具有高比容量、优异的循环性能和稳定性能的负极材料至关重要。量子点因细小的尺寸和超高的比表面积被广泛用于与负极基体材料复合,由量子点修饰的复合负极材料在碱金属离子电池中表现出优异的电化学性能。然而,目前对量子点及其复合材料用于碱金属离子电池负极的研究缺乏综述和展望。本文从金属氧化物量子点、金属硫化物量子点、金属氮化物量子点、碳量子点、单质类量子点以及其他类型量子点这6个方面对应用于碱金属离子电池负极的量子点进行综述,重点分析了各类量子点修饰的复合材料的作用机理和电化学性能。综合分析表明,量子点复合负极材料能有效缩短碱金属离子的扩散路径,提供更丰富的活性位点以及具有更高的循环稳定性,有望成为碱金属离子电池最具前途的负极材料。此外,本文总结了量子点复合负极材料存在的问题,并对未来量子点及其复合材料在电池领域的发展前景作了展望:①优化量子点合成路径;②明确量子点作用机理;③减少副反应消耗;④选用更合适的基体材料。
中图分类号:
周俊龙, 赵鲁康, 刘朝孟, 高宣雯, 骆文彬. 量子点及其复合材料作为碱金属离子电池负极的研究进展[J]. 储能科学与技术, 2023, 12(5): 1392-1408.
Junlong ZHOU, Lukang ZHAO, Zhaomeng LIU, Xuanwen GAO, Wenbin LUO. Advances in the research of quantum dots anode for alkali metal ion batteries[J]. Energy Storage Science and Technology, 2023, 12(5): 1392-1408.
表1
量子点及其复合材料的电化学性能"
Electrode material | Initial charge/discharge capacity /(mAh/g) | Current density (mA/g) | Cycle numbers | Capacity /(mAh/g) | Application | Refs |
---|---|---|---|---|---|---|
Metal oxide QDs | ||||||
MQDC-SnO2/RGO | 960/1620 | 1000 | 1000 | 505 | LIB | |
ZnO/RGO | 766/1027 | 1000 | 700 | 668 | LIB | |
NP CoOx QDs/C | 1253/2041 | 1000 | 900 | 1246 | LIB | |
Ga2O3-QD@NC | 993/1580 | 1000 | 300 | 460 | LIB | |
Fe3O4@C | 1204.3/1226.8 | 2000 | 800 | 601 | LIB | |
rGO QDs-MnO | 1669/3168 | 3000 | 200 | 603 | LIB | |
NOH | 1232.1/1921.67 | 2000 | 200 | 409 | LIB | |
Metal sulfide QDs | ||||||
SnS QDs@NC | 489/300 | 1000 | 500 | 172 | SIB | |
MoS2@SnS-QDs/CNN | 1416/1054 | 2000 | 1000 | 713 | LIB | |
ZnS-QDs@mNC | 1243/887 | 840 | 300 | 506 | LIB | |
WS2-PCNF | — | 2000 | 1000 | 470.6 | LIB | |
CoS x @NSC | 658/696 | 200 | 100 | 414 | SIB | |
Metal nitride QDs | ||||||
863/1488 | 2000 | 3000 | 378 | LIB | ||
WN@BCN | 763.9/940.9 | 1000 | 500 | 529 | LIB | |
TiN@C | 171/414 | 1000 | 5000 | 149 | SIB | |
VNQD@NC HSs | 376.2/465.2 | 1000 | 1000 | 306 | SIB | |
VN-QDs/CM | 274/376 | 500 | 500 | 215 | PIB | |
Carbon material QDs | ||||||
GQD@CNTs | 633/1029 | 1000 | 350 | 483 | LIB | |
C(ZIF-8)@GQDs | 264/708 | 100 | 200 | 425 | LIB | |
BN-CQDs | — | 3000 | 1000 | 103.4 | LIB | |
CDs@rGO | 310/698 | 200 | 840 | 244 | PIB | |
LAP(15)-rGO-CDs | 396/1290 | 1000 | 5000 | 299 | PIB | |
Elementary substance QDs | ||||||
3DOP Ge@N-C | 797/2493 | 5000 | 1200 | 1000 | LIB | |
Si QD clusters | 8151/1957 | 200 | 100 | 1232 | LIB | |
-/1489.6 | 1000 | 400 | 714.8 | LIB | ||
-/1176 | 200 | 500 | 685 | LIB | ||
BQDs/rGO | 1395/2651 | 2000 | 1000 | 374 | LIB | |
Other categories QDs | ||||||
Ni2P@NPC | 334/1351 | 1000 | 5000 | 212 | PIB | |
MoP@PC | — | 5000 | 1000 | 240 | PIB | |
a-SnSe/rGO | 610/873 | 1000 | 1400 | 397 | SIB | |
Fe2O3/MoO3@NG | — | 10000 | 1700 | 433.5 | LIB |
1 | ZHANG Z, ZHAO D C, XU Y Y, et al. A review on electrode materials of fast-charging lithium-ion batteries[J]. Chemical Record, 2022, 22(10): e202200127. |
2 | SUN C K, ZHANG X, LI C, et al. A presodiation strategy with high efficiency by utilizing low-price and eco-friendly Na2CO3 as the sacrificial salt towards high-performance pouch sodium-ion capacitors[J]. Journal of Power Sources, 2021, 515: 230628. |
3 | LIU J W, YUE M, WANG S Q, et al. A review of performance attenuation and mitigation strategies of lithium-ion batteries[J]. Advanced Functional Materials, 2022, 32(8): 2107769. |
4 | XU B, LEE J, KWON D, et al. Mitigation strategies for Li-ion battery thermal runaway: A review[J]. Renewable and Sustainable Energy Reviews, 2021, 150: 111437. |
5 | TRAN N, TA Q T H, TRAN V V. Review on the application of green and environmentally benign biowaste and natural substances in the synthesis of lithium-ion batteries[J]. International Journal of Energy Research, 2022, 46(10): 13251-13275. |
6 | BIN FAYYAZ AHSAN M, MEKHILEF S, SOON T K, et al. Lithium-ion battery and supercapacitor-based hybrid energy storage system for electric vehicle applications: A review[J]. International Journal of Energy Research, 2022, 46(14): 19826-19854. |
7 | HU Z, HAO J X, SHEN D Y, et al. Electro-spraying/spinning: A novel battery manufacturing technology[J]. Green Energy & Environment, 2022 |
8 | LIU Z M, WANG J, LU B G. Plum pudding model inspired KVPO4F@3DC as high-voltage and hyperstable cathode for potassium ion batteries[J]. Science Bulletin, 2020, 65(15): 1242-1251. |
9 | LIU Z M, WANG J, DING H B, et al. Carbon nanoscrolls for aluminum battery[J]. ACS Nano, 2018, 12(8): 8456-8466. |
10 | WANG J, LIU Z M, ZHOU J, et al. Insights into metal/metalloid-based alloying anodes for potassium ion batteries[J]. ACS Materials Letters, 2021, 3(11): 1572-1598. |
11 | PARK G D, PARK J S, KIM J K, et al. Recent advances in heterostructured anode materials with multiple anions for advanced alkali-ion batteries[J]. Advanced Energy Materials, 2021, 11(27): 2003058. |
12 | BI J X, DU Z Z, SUN J M, et al. On the road to the frontiers of lithium-ion batteries: A review and outlook of graphene anodes[J]. Advanced Materials, 2023, 35(16). |
13 | QIAO Y, ZHAO H P, SHEN Y L, et al. Recycling of graphite anode from spent lithium-ion batteries: Advances and perspectives[J]. EcoMat, 2023, 5(4). |
14 | LIU Z M, WANG J, JIA X X, et al. Graphene armored with a crystal carbon shell for ultrahigh-performance potassium ion batteries and aluminum batteries[J]. ACS Nano, 2019, 13(9): 10631-10642. |
15 | 蒋龙进, 张顺, 乔羽, 等. 废旧锂电池负极石墨失效机制及回收利用研究进展[J]. 储能科学与技术, 2023, 12(3): 822-834. |
JIANG L J, ZHANG S, QIAO Y, et al. A review of failure mechanisms and anode graphite recycling from spent lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(3): 822-834. | |
16 | ARISTOTE N T, SONG Z R, DENG W T, et al. Effect of double and triple-doping of sulfur, nitrogen and phosphorus on the initial coulombic efficiency and rate performance of the biomass derived hard carbon as anode for sodium-ion batteries[J]. Journal of Power Sources, 2023, 558: 232517. |
17 | WANG S E, KIM M J, LEE J W, et al. A novel high-performance TiO2- x/TiO1- yNy coating material for silicon anode in lithium-ion batteries[J]. Small Methods, 2022, 6(7): 2200430. |
18 | SHI J W, GAO H Y, HU G X, et al. Nanostructured SiOx-based anodes synthesized by a scalable micelle assisted method for high-performance lithium-ion battery[J]. Materials Chemistry and Physics, 2022, 291: 126721. |
19 | SHI H F, ZHANG W Y, WANG J S, et al. Scalable synthesis of a porous structure silicon/carbon composite decorated with copper as an anode for lithium ion batteries[J]. Applied Surface Science, 2023, 620: 156843. |
20 | RASAL A S, YADAV S, YADAV A, et al. Carbon quantum dots for energy applications: A review[J]. ACS Applied Nano Materials, 2021, 4(7): 6515-6541. |
21 | MENG D X, WEI L H, SHI J W, et al. A review of enhanced electrocatalytic composites hydrogen/oxygen evolution based on quantum dot[J]. Journal of Industrial and Engineering Chemistry, 2023, 121: 27-39. |
22 | YU Y, MA T, HUANG H. Semiconducting quantum dots for energy conversion and storage[J]. Advanced Functional Materials, 2023, 33(16): 2213770. |
23 | CHEN Y J, YU S, FAN X B, et al. Mechanistic insights into the influence of surface ligands on quantum dots for photocatalysis[J]. Journal of Materials Chemistry A, 2023, 11(16): 8497-8514. |
24 | YANG D, CUI Z J, WEN Z Q, et al. Recent updates on functionalized silicon quantum-dot-based nanoagents for biomedical applications[J]. ACS Materials Letters, 2023, 5(4): 985-1008. |
25 | LI M X, CHEN T, GOODING J J, et al. Review of carbon and graphene quantum dots for sensing[J]. ACS Sensors, 2019, 4(7): 1732-1748. |
26 | HUANG K, LIU J L, YUAN J J, et al. Perovskite-quantum dot hybrid solar cells: A multi-win strategy for high performance and stability[J]. Journal of Materials Chemistry A, 2023, 11(9): 4487-4509. |
27 | DU J K, LI Q M, CHAI J L, et al. Review of metal oxides as anode materials for lithium-ion batteries[J]. Dalton Transactions, 2022, 51(25): 9584-9590. |
28 | WANG Y R, ZHUANG Q F, LI Y, et al. Bio-inspired synthesis of transition-metal oxide hybrid ultrathin nanosheets for enhancing the cycling stability in lithium-ion batteries[J].Nano Research, 2022, 15(6): 5064-5071. |
29 | YANG X B, WANG H Q, SONG Y Y, et al. Low-temperature synthesis of a porous high-entropy transition-metal oxide as an anode for high-performance lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(23): 26873-26881. |
30 | CHEN Y, CHEN X Y, ZHANG Y L. A comprehensive review on metal-oxide nanocomposites for high-performance lithium-ion battery anodes[J]. Energy & Fuels, 2021, 35(8): 6420-6442. |
31 | KIM S S, JUNG S M, SENTHIL C, et al. Unlocking rapid charging and extended lifetimes for Li-ion batteries using freestanding quantum conversion-type aerofilm anode[J]. ACS Nano, 2021, 15(11): 18437-18447. |
32 | ZHU C L, ZHU S M, ZHANG K, et al. Confined SnO2 quantum-dot clusters in graphene sheets as high-performance anodes for lithium-ion batteries[J]. Scientific Reports, 2016, 6(1): 1-8. |
33 | WU C P, XIE K X, HE J P, et al. SnO2 quantum dots modified N-doped carbon as high-performance anode for lithium ion batteries by enhanced pseudocapacitance[J].Rare Metals, 2021, 40(1): 48-56. |
34 | WU K, SHI B W, QI L Y, et al. SnO2 quantum dots @ 3D sulfur-doped reduced graphene oxides as active and durable anode for lithium ion batteries[J]. Electrochimica Acta, 2018, 291: 24-30. |
35 | DONG C L, ZHANG X L, DONG W J, et al. ZnO/ZnS heterostructure with enhanced interfacial lithium absorption for robust and large-capacity energy storage[J]. Energy & Environmental Science, 2022, 15(11): 4738-4747. |
36 | FAIZAH F, PRIYONO B, CHAIRUNNISA Z E, et al. Zinc oxide nanoparticle and its characterization in the LTO/ZnO composite for lithium-ion battery anode[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1098(6): 062027. |
37 | MA X, LI Z H, CHEN D K, et al. Nitrogen-doped porous carbon sponge-confined ZnO quantum dots for metal collector-free lithium ion battery[J]. Journal of Electroanalytical Chemistry, 2019, 848: 113275. |
38 | TAN Q K, KONG X L, GUAN X G, et al. Crystallization of zinc oxide quantum dots on graphene sheets as an anode material for lithium ion batteries[J]. CrystEngComm, 2020, 22(2): 320-329. |
39 | DONG X L, ZHANG Y T, CUI C S, et al. Study on the binary transition metal oxide Mn2V2O7 structures for high performance lithium-ion batteries[J]. Journal of Alloys and Compounds, 2022, 907: 164518. |
40 | ZHOU G L, DING W H, GUAN Y, et al. Progress of NiO-based anodes for high-performance Li-ion batteries[J]. The Chemical Record, 2022, 22(10): https://doi.org/10.1002/tcr.202200111. |
41 | LU D J, YUAN C, YU M C, et al. Nanoporous composites of CoOx quantum dots and ZIF-derived carbon as high-performance anodes for lithium-ion batteries[J]. ACS Omega, 2020, 5(34): 21488-21496. |
42 | WANG Y Y, XIONG Z S, ZHAO Y, et al. Ga2O3 quantum dots with N-doped amorphous carbon fixed for efficient storage and transfer of lithium ions by introduction of dopamine hydrochloride[J]. Langmuir, 2023, 39(10): 3628-3636. |
43 | HUANG Y X, LYU Y Y, ZOU Y L, et al. TiO2 quantum dots decorated Si nanocage for enhanced lithium ion batteries[J]. Journal of Electroanalytical Chemistry, 2023, 930: 117128. |
44 | LIU Y, DAI Y, JIANG X B, et al. Fe3O4 quantum dots embedded in porous carbon microspheres for long-life lithium-ion batteries[J]. Materials Today Energy, 2019, 12: 269-276. |
45 | ZHU X Q, LI J, LIU P, et al. Nitrogen-doped thermally reduced graphene oxide quantum dots-MnO composite toward enhanced-performance Li-ion battery[J]. Applied Physics A, 2018, 124(10): 722. |
46 | LIANG F H, WU D N, JIANG L, et al. Layered niobium oxide hydrate anode with excellent performance for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(43): 51057-51065. |
47 | WANG S C, QU C W, WEN J W, et al. Progress of transition metal sulfides used as lithium-ion battery anodes[J]. Materials Chemistry Frontiers, 2023: https://doi.org/10.1039/D2QM01200F. |
48 | ZHOU X H, SU K M, KANG W M, et al. Locking metal sulfide nanoparticles in interconnected porous carbon nanofibers with protective macro-porous skin as freestanding anodes for lithium ion batteries[J]. Chemical Engineering Journal, 2020, 397: 125271. |
49 | ZHANG B, XU B, XIAO Z, et al. Inner-stress-dissipative, rapid self-healing core-shell sulfide quantum dots for remarkable potassium-ion storage[J]. Energy Storage Materials, 2023, 56: 96-107. |
50 | ZHAO J B, ZHANG Y Y, WANG Y H, et al. The application of nanostructured transition metal sulfides as anodes for lithium ion batteries[J]. Journal of Energy Chemistry, 2018, 27(6): 1536-1554. |
51 | XU G B, YANG L W, WEI X L, et al. MoS2-quantum-dot-interspersed Li4Ti5O12 nanosheets with enhanced performance for li-and Na-ion batteries[J]. Advanced Functional Materials, 2016, 26(19): 3349-3358. |
52 | VEERASUBRAMANI G K, PARK M S, CHOI J Y, et al. Ultrasmall SnS quantum dots anchored onto nitrogen-enriched carbon nanospheres as an advanced anode material for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(6): 7114-7124. |
53 | KE G X, CHEN H H, HE J, et al. Ultrathin MoS2 anchored on 3D carbon skeleton containing SnS quantum dots as a high-performance anode for advanced lithium ion batteries[J]. Chemical Engineering Journal, 2021, 403: 126251. |
54 | FANG D L, CHEN S M, WANG X, et al. ZnS quantum dots@multilayered carbon: Geological-plate-movement-inspired design for high-energy Li-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(18): 8358-8365. |
55 | SHIN D Y, LEE J S, KOO B R, et al. Hierarchical hybrid nanostructure of 1T-tungsten disulfide quantum dots/multihollow capillary bundle-type mesoporous carbon for ultrafast and ultrastable lithium storage[J]. Chemical Engineering Journal, 2021, 412: 128547. |
56 | GUO Q B, MA Y F, CHEN T T, et al. Cobalt sulfide quantum dot embedded N/S-doped carbon nanosheets with superior reversibility and rate capability for sodium-ion batteries[J]. ACS Nano, 2017, 11(12): 12658-12667. |
57 | WANG P Y, ZHAO B C, BAI J, et al. Transition metal nitrides in lithium-and sodium-ion batteries: Recent progress and perspectives[J]. Advanced Materials Interfaces, 2022, 9(24): 2200606. |
58 | LIU R J, YANG L X, ZHANG T Y, et al. Nano-sheet and nano-laminar vanadium nitride as anodes for high-performance lithium-ions storage[J]. International Journal of Energy Research, 2022, 46(15): 22486-22500. |
59 | YI H, HUANG Y, SHA Z C, et al. Facile synthesis of Mo2N quantum dots embedded N-doped carbon nanosheets composite as advanced anode materials for lithium-ion batteries[J]. Materials Letters, 2020, 276: 128205. |
60 | LIU C X, WANG C, MENG X W, et al. Tungsten nitride nanoparticles anchored on porous borocarbonitride as high-rate anode for lithium ion batteries[J]. Chemical Engineering Journal, 2020, 399: 125705. |
61 | LIU M, ZHANG Z L, XIE Y Y, et al. Titanium nitride as a promising sodium-ion battery anode: Interface-confined preparation and electrochemical investigation[J]. Dalton Transactions, 2022, 51(34): 12855-12865. |
62 | YUAN J, HU X, CHEN J X, et al. In situ formation of vanadium nitride quantum dots on N-doped carbon hollow spheres for superior lithium and sodium storage[J]. Journal of Materials Chemistry A, 2019, 7(15): 9289-9296. |
63 | WU H Y, YU Q Y, LAO C Y, et al. Scalable synthesis of VN quantum dots encapsulated in ultralarge pillared N-doped mesoporous carbon microsheets for superior potassium storage[J]. Energy Storage Materials, 2019, 18: 43-50. |
64 | MURALIDHARAN P, YUN J H, PONRAJ R, et al. Melamine-assisted synthesis of vanadium nitride quantum dots: Application for full-cell lithium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 888: 161522. |
65 | YUAN S, LAI Q H, DUAN X, et al. Carbon-based materials as anode materials for lithium-ion batteries and lithium-ion capacitors: A review[J]. Journal of Energy Storage, 2023, 61: 106716. |
66 | 苑雪, 李洪基, 白文慧, 等. 生物质衍生碳基材料在钠离子电池负极中的应用[J]. 储能科学与技术, 2023, 12(3): 721-742. |
YUAN X, LI H J, BAI W H, et al. Application of biomass-derived carbon-based anode materials in sodium ion battery[J]. Energy Storage Science and Technology, 2023, 12(3): 721-742. | |
67 | GUO R T, LI L, WANG B W, et al. Functionalized carbon dots for advanced batteries[J]. Energy Storage Materials, 2021, 37: 8-39. |
68 | PATTARAPONGDILOK N, PARASUK V. Adsorptions of lithium ion/atom and packing of Li ions on graphene quantum dots: Application for Li-ion battery[J]. Computational and Theoretical Chemistry, 2020, 1177: 112779. |
69 | ZHAO X W, WU Y Z, WANG Y S, et al. High-performance Li-ion batteries based on graphene quantum dot wrapped carbon nanotube hybrid anodes[J].Nano Research, 2020, 13(4): 1044-1052. |
70 | YU H, ZHU W J, ZHOU H, et al. Porous carbon derived from metal-organic framework@graphene quantum dots as electrode materials for supercapacitors and lithium-ion batteries[J]. RSC Advances, 2019, 9(17): 9577-9583. |
71 | KHAN F, OH M, KIM J H. N-functionalized graphene quantum dots: Charge transporting layer for high-rate and durable Li4Ti5O12-based Li-ion battery[J]. Chemical Engineering Journal, 2019, 369: 1024-1033. |
72 | VIJAYA KUMAR SAROJA A P, GARAPATI M S, SHYIAMALADEVI R, et al. Facile synthesis of heteroatom doped and undoped graphene quantum dots as active materials for reversible lithium and sodium ions storage[J]. Applied Surface Science, 2020, 504: 144430. |
73 | KIM K H, AHN H J. Surface functional group-tailored B and N co-doped carbon quantum dot anode for lithium-ion batteries[J]. International Journal of Energy Research, 2022, 46(6): 8367-8375. |
74 | ZHANG E J, JIA X X, WANG B, et al. Carbon dots@rGO paper as freestanding and flexible potassium-ion batteries anode[J]. Advanced Science, 2020, 7(15): 2000470. |
75 | DONG S, SONG Y L, FANG Y Z, et al. Microwave-assisted synthesis of carbon dots modified graphene for full carbon-based potassium ion capacitors[J]. Carbon, 2021, 178: 1-9. |
76 | JAVED M, SAQIB A N S, ATA-UR-REHMAN, et al. Carbon quantum dots from glucose oxidation as a highly competent anode material for lithium and sodium-ion batteries[J]. Electrochimica Acta, 2019, 297: 250-257. |
77 | KRAJEWSKI M, CHEN C H, HUANG Z T, et al. Li4Ti5O12 coated by biomass-derived carbon quantum dots as anode material with enhanced electrochemical performance for lithium-ion batteries[J]. Energies, 2022, 15(20): 7715. |
78 | SHIN D Y, SUNG K W, AHN H J. Fluorine-doped carbon quantum dot interfacial layer on stockade-like etched copper foil for boosting Li-ion storage[J]. Chemical Engineering Journal, 2021, 413: 127563. |
79 | WANG Y, LUO S N, CHEN M, et al. Uniformly confined germanium quantum dots in 3D ordered porous carbon framework for high-performance Li-ion battery[J]. Advanced Functional Materials, 2020, 30(16): 2000373. |
80 | QIU T Y, YANG L, XIANG Y E, et al. Heterogeneous interface design for enhanced sodium storage: Sb quantum dots confined by functional carbon[J]. Small Methods, 2021, 5(7): 2100188. |
81 | CHOI Y H, PARK H, LEE S, et al. Synthesis and electrochemical performance of π-conjugated molecule bridged silicon quantum dot cluster as anode material for lithium-ion batteries[J]. ACS Omega, 2020, 5(15): 8629-8637. |
82 | HU W, HE K, WU S, et al. Ordered sandwich silicon quantum dot/Fe3O4/reduced graphene oxide architectures for high-performance lithium-ion batteries[J]. Journal of Alloys and Compounds, 2023, 943: 168947. |
83 | ZHANG G H, ZHU J, ZENG W, et al. Tin quantum dots embedded in nitrogen-doped carbon nanofibers as excellent anode for lithium-ion batteries[J]. Nano Energy, 2014, 9: 61-70. |
84 | WANG H Q, AN D, TIAN P Z, et al. Incorporating quantum-sized boron dots into 3D cross-linked rGO skeleton to enable the activity of boron anode for favorable lithium storage[J]. Chemical Engineering Journal, 2021, 425: 130659. |
85 | GE H, CUI L X, ZHANG B, et al. Ag quantum dots promoted Li4Ti5O12/TiO2 nanosheets with ultrahigh reversible capacity and super rate performance for power lithium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(43): 16886-16895. |
86 | WANG D, ZHOU J S, LI J K, et al. Cobalt-boron nanoparticles anchored on graphene as anode of lithium ion batteries[J]. Chemical Engineering Journal, 2019, 360: 271-279. |
87 | WANG S, ZHANG X B. N-doped C@Zn3B2O6 as a low cost and environmentally friendly anode material for Na-ion batteries: High performance and new reaction mechanism[J]. Advanced Materials, 2019, 31(5): 1805432. |
88 | YAN Z H, HUANG Z Y, YAO Y, et al. Monodispersed Ni2P nanodots embedded in N, P co-doped porous carbon as super stable anode material for potassium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 858: 158203. |
89 | YAN Z H, HUANG Z Y, ZHOU H H, et al. Facile fabrication of MoP nanodots embedded in porous carbon as excellent anode material for potassium-ion batteries[J]. Journal of Energy Chemistry, 2021, 54: 571-578. |
90 | WANG M S, PENG A M, XU H, et al. Amorphóus SnSe quantum dots anchoring on graphene as high performance anodes for battery/capacitor sodium ion storage[J]. Journal of Power Sources, 2020, 469: 228414. |
91 | NI G X, ZHANG Y J, LI Y Z, et al. SnSe quantum dots anchored on few-layered Ti3C2 as anodes for sodium ion batteries with enhanced cycling stability[J]. New Journal of Chemistry, 2023, 47(14): 6540-6550. |
92 | LIU W, YUAN J J, HAO Y C, et al. Heterogeneous structured MoSe2-MoO3 quantum dots with enhanced sodium/potassium storage[J]. Journal of Materials Chemistry A, 2020, 8(44): 23395-23403. |
93 | DING J, SHENG R, ZHANG Y, et al. Fe2O3/MoO3@NG heterostructure enables high pseudocapacitance and fast electrochemical reaction kinetics for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(33): 37747-37758. |
[1] | 张吉栋, 杨展, 黄建国. 基于天然纤维素物质的C/TiO2/CuMoO4 微-纳结构复合纤维材料构筑及其电化学性能[J]. 储能科学与技术, 2023, 12(5): 1616-1624. |
[2] | 边煜华, 刘朝孟, 高宣雯, 李健国, 王达, 李尚倬, 骆文彬. 醚基电解液中CoS2/NC作为钠离子电池高性能阳极的原因分析[J]. 储能科学与技术, 2023, 12(5): 1500-1509. |
[3] | 王津, 张少飞, 孙金峰, 李田田. 纳米多孔合金快速燃烧氧化及高效储能研究[J]. 储能科学与技术, 2023, 12(5): 1480-1489. |
[4] | 赵玉文, 杨欢, 郭俊朋, 张毅, 孙琦, 张志佳. 磁性金属元素在钠离子电池中的应用[J]. 储能科学与技术, 2023, 12(5): 1332-1347. |
[5] | 余永诗, 夏先明, 黄弘扬, 姚雨, 芮先宏, 钟国彬, 苏伟, 余彦. 钠金属负极人工界面保护层的研究进展[J]. 储能科学与技术, 2023, 12(5): 1380-1391. |
[6] | 郭俊朋, 孙琦, 陈月芳, 赵玉文, 杨欢, 张志佳. 简便制备三维多级Fe3O4/碳纳米纤维一体化电极及其储钠性能研究[J]. 储能科学与技术, 2023, 12(5): 1469-1479. |
[7] | 朱璟, 申晓宇, 岑官骏, 乔荣涵, 郝峻丰, 季洪祥, 田孟羽, 金周, 詹元杰, 武怿达, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2023.2.1—2023.3.31)[J]. 储能科学与技术, 2023, 12(5): 1553-1569. |
[8] | 刘畅, 姚君君, 孙颖, 冯大明, 郑宏杰, 马天翼. 乳化/氧化协同制备高倍率钾离子电池负极用沥青基碳微球[J]. 储能科学与技术, 2023, 12(5): 1444-1452. |
[9] | 成雪莉, 张维福, 罗城城, 袁小亚. 一步水热法制备三维石墨烯/Fe3O4 复合材料及其储锂性能[J]. 储能科学与技术, 2023, 12(4): 1066-1074. |
[10] | 王跃迪, 仇中柱, 吴渺, 朱燕艳, 屈蒙. 多孔NiMoO4/NiCo2S4 复合材料的制备及其电化学性能[J]. 储能科学与技术, 2023, 12(4): 1034-1044. |
[11] | 张文, 李爽, 陈诚, 谌强. 原位固化对硅氧负极性能的影响[J]. 储能科学与技术, 2023, 12(4): 1045-1050. |
[12] | 张顺, 曾芳磊, 李宁, 袁宁一. 高阻燃硫正极的制备及其性能[J]. 储能科学与技术, 2023, 12(4): 1018-1024. |
[13] | 阮晶晶, 刘福园, 李珅珅, 高桂红, 刘艳侠. 碳还原法制备棒状硅基材料及其在锂浆料电池中的应用[J]. 储能科学与技术, 2023, 12(4): 1051-1058. |
[14] | 汤才, 蒋江民, 王新峰, 刘广发, 崔艳华, 庄全超. Li/CF x 一次电池研究进展[J]. 储能科学与技术, 2023, 12(4): 1093-1109. |
[15] | 申晓宇, 朱璟, 岑官骏, 乔荣涵, 郝峻丰, 田孟羽, 季洪祥, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.12.1—2023.1.31)[J]. 储能科学与技术, 2023, 12(3): 639-653. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||