储能科学与技术 ›› 2023, Vol. 12 ›› Issue (5): 1553-1569.doi: 10.19799/j.cnki.2095-4239.2023.0228

• 热点点评 • 上一篇    下一篇

锂电池百篇论文点评(2023.2.12023.3.31

朱璟(), 申晓宇, 岑官骏, 乔荣涵, 郝峻丰, 季洪祥, 田孟羽, 金周, 詹元杰, 武怿达, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰()   

  1. 中国科学院物理研究所 北京 100190
  • 收稿日期:2023-04-17 出版日期:2023-05-05 发布日期:2023-05-29
  • 通讯作者: 黄学杰 E-mail:zhujing16@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
  • 作者简介:朱璟(1998—),男,硕士研究生,研究方向为固态电池正极材料,E-mail:zhujing16@mails.ucas.ac.cn

Reviews of selected 100 recent papers for lithium batteriesFeb. 12023 to Mar. 312023

Jing ZHU(), Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Junfeng HAO, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yida WU, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()   

  1. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2023-04-17 Online:2023-05-05 Published:2023-05-29
  • Contact: Xuejie HUANG E-mail:zhujing16@mails.ucas.ac.cn;xjhuang@iphy.ac.cn

摘要:

该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了 Web of Science 从2023年2月1日至2023年3月31日上线的锂电池研究论文,共有3714篇,选择其中100篇加以评论。正极材料的研究集中于镍酸锂、高镍三元材料的表面包覆和掺杂改性,以及其在长循环中的结构演变等。硅基复合负极材料的研究包括材料制备和对电极结构的优化以缓冲体积变化,并重点关注了功能性黏结剂的应用和界面的改性。金属锂负极的研究集中于金属锂的表面修饰。固态电解质的研究主要包括对硫化物固态电解质、氧化物固态电解质、氯化物固态电解质、聚合物固态电解质和复合固态电解质的结构设计以及相关性能研究。其他电解液和添加剂的研究则主要包括不同电解质和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。固态电池方向更多关注层状氧化物正极材料在硫化物、氯化物固态电池中的应用。锂硫电池的研究重点是提高硫正极的活性,抑制“穿梭”效应。电池技术方面的研究还包括干法等电极制备技术。测试技术涵盖了锂沉积和正极中锂离子输运等方面。理论模拟工作侧重于固态电池中固态电解质及其与电极界面的稳定性研究。

关键词: 锂电池, 正极材料, 负极材料, 电解质, 电池技术

Abstract:

This bimonthly review paper provides a comprehensive overview of recent research and developments in the field of lithium batteries. Our search of the Web of Science yielded 3714 papers from February 1, 2023 to March 31, 2023, from which we selected 100 for highlighting. One noteworthy area of investigation is the use of high-nickel ternary layered oxides and LiNiO2 as cathode materials, with extensive investigations of how doping and interface modifications affect their electrochemical performances, as well as monitoring of surface and bulk evolution of structures during prolonged cycling. For anode materials, researchers focus mainly on silicon-based composite materials optimizing electrode structures to mitigate the effects of volume changes, while also emphasizing the importance of functional binders and interface modification. Efforts have also been devoted to designing the three-dimensional electrode structures, modifying the interface, and mitigating inhomogeneity plating of lithium metal anodes. Research on solid-state electrolytes is mainly focused on designing and optimizing their structure and performance, particularly in sulfide-, oxide-, chloride-, and polymer-based solid-state electrolytes and their composites. Liquid electrolytes similarly benefit from the use of optimized solvents, lithium salts, and functional additives for different battery applications. For solid-state batteries, the studies are mainly focused on the suitability of layered oxide cathode materials with sulfide based- and chloride based-solid-state electrolytes. Additionally, researchers are investigating composite sulfur cathodes with a high ion/electron conductive matrix and functional binders to suppress the “shuttle effect” and activate sulfur in Li-S batteries. Other relevant works are also presented to the dry electrode coating technology. There are a few papers for the characterization techniques of lithium-ion transport in the cathode and lithium deposition. Ultimately, theoretical calculations are carried out to better understand the stability of solid electrolytes and the interface between the solid-state electrolyte and Li.

Key words: lithium batteries, cathode material, anode material, electrolyte, battery technology

中图分类号: