储能科学与技术 ›› 2023, Vol. 12 ›› Issue (5): 1553-1569.doi: 10.19799/j.cnki.2095-4239.2023.0228
朱璟(), 申晓宇, 岑官骏, 乔荣涵, 郝峻丰, 季洪祥, 田孟羽, 金周, 詹元杰, 武怿达, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰()
收稿日期:
2023-04-17
出版日期:
2023-05-05
发布日期:
2023-05-29
通讯作者:
黄学杰
E-mail:zhujing16@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
作者简介:
朱璟(1998—),男,硕士研究生,研究方向为固态电池正极材料,E-mail:zhujing16@mails.ucas.ac.cn;
Jing ZHU(), Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Junfeng HAO, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yida WU, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()
Received:
2023-04-17
Online:
2023-05-05
Published:
2023-05-29
Contact:
Xuejie HUANG
E-mail:zhujing16@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
摘要:
该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了 Web of Science 从2023年2月1日至2023年3月31日上线的锂电池研究论文,共有3714篇,选择其中100篇加以评论。正极材料的研究集中于镍酸锂、高镍三元材料的表面包覆和掺杂改性,以及其在长循环中的结构演变等。硅基复合负极材料的研究包括材料制备和对电极结构的优化以缓冲体积变化,并重点关注了功能性黏结剂的应用和界面的改性。金属锂负极的研究集中于金属锂的表面修饰。固态电解质的研究主要包括对硫化物固态电解质、氧化物固态电解质、氯化物固态电解质、聚合物固态电解质和复合固态电解质的结构设计以及相关性能研究。其他电解液和添加剂的研究则主要包括不同电解质和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。固态电池方向更多关注层状氧化物正极材料在硫化物、氯化物固态电池中的应用。锂硫电池的研究重点是提高硫正极的活性,抑制“穿梭”效应。电池技术方面的研究还包括干法等电极制备技术。测试技术涵盖了锂沉积和正极中锂离子输运等方面。理论模拟工作侧重于固态电池中固态电解质及其与电极界面的稳定性研究。
中图分类号:
朱璟, 申晓宇, 岑官骏, 乔荣涵, 郝峻丰, 季洪祥, 田孟羽, 金周, 詹元杰, 武怿达, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2023.2.1—2023.3.31)[J]. 储能科学与技术, 2023, 12(5): 1553-1569.
Jing ZHU, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Junfeng HAO, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yida WU, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2023 to Mar. 31, 2023)[J]. Energy Storage Science and Technology, 2023, 12(5): 1553-1569.
1 | RAFFAEL R, DAVIDE G, MARK U, et al. Single-crystalline LiNiO as high-capacity cathode active material for solid-state lithium-ion batteries[J]. Journal of the Electrochemical Society, 2023, 170(2): doi: 10.1149/1945-7111/acbc4f. |
2 | WU J, WEN Y L, ZHOU Q, et al. Simultaneous bulk doping and surface coating of Sn to boost the electrochemical performance of LiNiO2[J]. ACS Applied Energy Materials, 2023, 6(5): 3010-3019. |
3 | ZAKER N, GENG C, RATHORE D, et al. Probing the mysterious behavior of tungsten as a dopant inside pristine cobalt-free nickel-rich cathode materials[J]. Advanced Functional Materials, 2023, doi: 10.1002/adfm.202211178. |
4 | LI B, ROUSSE G, ZHANG L T, et al. Constructing "Li-rich Ni-rich" oxide cathodes for high-energy-density Li-ion batteries[J]. Energy & Environmental Science, 2023, 16(3): 1210-1222. |
5 | ANANSUKSAWAT N, CHIOCHAN P, HOMLAMAI K, et al. Reducing intrinsic drawbacks of Ni-rich layered oxide with a multifunctional materials dry-coating strategy[J]. Journal of Power Sources, 2023, 554: doi: 10.1016/j.jpowsour.2022.232324. |
6 | JAMES E T, JEONGSIK Y, JAEHONG C, et al. Air-and moisture robust surface modification for Ni-rich layered cathode materials for Li-ion batteries[J]. Small, 2023: doi: 10.1002/smll.202206576: e2206576-e2206576. |
7 | HEO J, JUNG S K, HWANG I, et al. Amorphous iron fluorosulfate as a high-capacity cathode utilizing combined intercalation and conversion reactions with unexpectedly high reversibility[J]. Nature Energy, 2023, 8(1): 30-39. |
8 | QIAN J, HA Y, KOIRALA K P, et al. Toward stable cycling of a cost-effective cation-disordered rocksalt cathode via fluorination[J]. Advanced Functional Materials, 2023, doi: 10.1002/adfm.202205972. |
9 | ZHANG W, GUI S W, LI W M, et al. Functionally gradient silicon/graphite composite electrodes enabling stable cycling and high capacity for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(46): 51954-51964. |
10 | WANG X X, WANG Y L, MA H R, et al. Solid silicon nanosheet sandwiched by self-assembled honeycomb silicon nanosheets enabling long life at high current density for a lithium-ion battery anode[J]. ACS Applied Materials & Interfaces, 2023, doi: 10.1021/acsami.2c22203. |
11 | YAO K, LI N, LI N, et al. Tin metal improves the lithiation kinetics of high-capacity silicon anodes[J]. Chemistry of Materials, 2023, doi: 10.1021/acs.chemmater.2c01867. |
12 | HAN D Y, HAN I K, SON H B, et al. Layering charged polymers enable highly integrated high-capacity battery anodes[J]. Advanced Functional Materials, 2023, doi: 10.1002/adfm.202213458. |
13 | WANG F, MA X A, LI Y R, et al. Room-temperature rapid self-healing polymer binders for Si anodes in highly cycling-stable and capacity-maintained lithium-ion batteries[J]. ACS Applied Energy Materials, 2023, 6(6): 3538-3548. |
14 | MU T S, SUN Y P, WANG C H, et al. Long-life silicon anodes by conformal molecular-deposited polyurea interface for lithium ion batteries[J]. Nano Energy, 2022, 103: doi: 10.1016/j.nanoen.2022.107829. |
15 | CHEN W L, LIAO Y Q, CHEN K Y, et al. Stable and high-rate silicon anode enabled by artificial Poly(acrylonitrile)-Sulfur interface engineering for advanced lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2023, 929: doi: 10.1016/j.jelechem.2022.117093. |
16 | JESCHULL F, ZHANG L T, TRABESINGER S. Interphase formation with carboxylic acids as slurry additives for Si electrodes in Li-ion batteries. Part 1: Performance and gas evolution[J]. Journal of Physics: Energy, 2023, 5(2): 025003. |
17 | CHENG Z Z, CHEN Y, SHI L, et al. Long-lifespan lithium metal batteries enabled by a hybrid artificial solid electrolyte interface layer[J]. ACS Applied Materials & Interfaces, 2023, 15(8): 10585-10592. |
18 | BAE J, CHOI K, SONG H, et al. Reinforcing native solid-electrolyte interphase layers via electrolyte-swellable soft-scaffold for lithium metal anode[J]. Advanced Energy Materials, 2023: doi: 10.1002/aenm.202203818. |
19 | HAN Z Y, REN H R, HUANG Z J, et al. A permselective coating protects lithium anode toward a practical lithium-sulfur battery[J]. ACS Nano, 2023, 17(5): 4453-4462. |
20 | TONG B, SONG Z Y, FENG W F, et al. Design of a teflon-like anion for unprecedently enhanced lithium metal polymer batteries (adv. energy mater. 15/2023)[J]. Advanced Energy Materials, 2023, 13(15): doi: 10.1002/aenm.202204085. |
21 | LI C H, TU S B, AI X, et al. Stress-regulation design of lithium alloy electrode toward stable battery cycling[J]. Energy & Environmental Materials, 2023, 6(1): doi: 10.1002/eem2.12267. |
22 | PRADHAN A, BADAM R, MIYAIRI R, et al. Extreme fast charging capability in graphite anode via a lithium borate type biobased polymer as aqueous polyelectrolyte binder[J]. ACS Materials Letters, 2023, 5(2): 413-420. |
23 | CAI T, SUN Q J, CAO Z, et al. Electrolyte additive-controlled interfacial models enabling stable antimony anodes for lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2022, 126(48): 20302-20313. |
24 | JIANG Z, LIU Y, PENG H L, et al. Enhanced air stability and interfacial compatibility of Li-argyrodite sulfide electrolyte triggered by CuBr co-substitution for all-solid-state lithium batteries[J]. Energy Storage Materials, 2023, 56: 300-309. |
25 | SCHNEIDER C, SCHMIDT C P, NEUMANN A, et al. Effect of particle size and pressure on the transport properties of the fast ion conductor t-Li7 SiPS8[J]. Advanced Energy Materials, 2023, 13(15): doi: 10.1002/aenm.202203873. |
26 | WANG S, GAUTAM A, WU X B, et al. Effect of processing on structure and ionic conductivity of chlorine-rich lithium argyrodites[J]. Advanced Energy and Sustainability Research, 2023: doi: 10.1002/aesr.202200197. |
27 | HUH Y, GON LEE H, CHO C M, et al. Solution-processed synthesis of nano-sized argyrodite solid electrolytes with cavitation effect for high performance all-solid-state lithium-ion batteries[J]. Batteries & Supercaps, 2023, 6(4): doi: 10.1002/batt.202300036. |
28 | HOOD Z D, MANE A U, SUNDAR A, et al. Multifunctional coatings on sulfide-based solid electrolyte powders with enhanced processability, stability, and performance for solid-state batteries[J]. Advanced Materials, 2023: doi: 10.1002/adma.202300673: e2300673-e2300673. |
29 | TANAKA Y, UENO K, MIZUNO K, et al. New oxyhalide solid electrolytes with high lithium ionic conductivity >10 mS·cm-1 for all-solid-state batteries[J]. Angewandte Chemie (International Ed in English), 2023, 62(13): doi: 10.1002/anie.202217581. |
30 | LI W J, CHEN Z Y, CHEN Y S, et al. High-voltage superionic and humidity-tolerant Li2.5Sc0.5Zr0.5Cl6 conductor for lithium batteries via preferred orientation[J]. Chemical Engineering Journal, 2023, 455: doi: 10.1016/j.cej.2022.140509. |
31 | LANDGRAF V, FAMPRIKIS T, DE LEEUW J, et al. Li5NCl2: A fully-reduced, highly-disordered nitride-halide electrolyte for solid-state batteries with lithium-metal anodes[J]. ACS Applied Energy Materials, 2023, 6(3): 1661-1672. |
32 | HEYWOOD S, LESSMEIER M, DRISCOLL D, et al. Tailoring solid-state synthesis routes for high confidence production of phase pure, low impedance Al-LLZO[J]. Journal of the American Ceramic Society, 2023, 106(5): 2786-2796. |
33 | LE MONG A, KIM D. Self-healable, super Li-ion conductive, and flexible quasi-solid electrolyte for long-term safe lithium sulfur batteries[J]. Journal of Materials Chemistry A, 2023, 11(12): 6503-6521. |
34 | LI Z, YU R, WENG S T, et al. Tailoring polymer electrolyte ionic conductivity for production of low-temperature operating quasi-all-solid-state lithium metal batteries[J]. Nature Communications, 2023, 14: 482. |
35 | BAO C S, ZHENG C J, WU M F, et al. 12µm-thick sintered garnet ceramic skeleton enabling high-energy-density solid-state lithium metal batteries[J]. Advanced Energy Materials, 2023, 13(13): doi: 10.1002/aenm.202204028. |
36 | FU Y D, YANG K, XUE S D, et al. Surface defects reinforced polymer-ceramic interfacial anchoring for high-rate flexible solid-state batteries[J]. Advanced Functional Materials, 2023, 33(10): doi: 10.1002/adfm.202210845. |
37 | MÉRY A, ROUSSELOT S, LEPAGE D, et al. Limiting factors affecting the ionic conductivities of LATP/polymer hybrid electrolytes[J]. Batteries, 2023, 9(2): 87. |
38 | LIN W T, ZHENG X W, MA S, et al. Quasi-solid polymer electrolyte with multiple lithium-ion transport pathways by in situ thermal-initiating polymerization[J]. ACS Applied Materials & Interfaces, 2023, 15(6): 8128-8137. |
39 | GAO H P, YAN Q Z, HOLOUBEK J, et al. Enhanced electrolyte transport and kinetics mitigate graphite exfoliation and Li plating in fast-charging Li-ion batteries[J]. Advanced Energy Materials, 2023, 13(5): doi: 10.1002/aenm.202202906. |
40 | PIAO Z H, REN H R, LU G X, et al. Stable operation of lithium metal batteries with aggressive cathode chemistries at 4.9 V[J]. Angewandte Chemie, 2023, 62(15): doi: 10.1002/anie.202300966. |
41 | QIN M S, ZENG Z Q, LIU X W, et al. Revealing surfactant effect of trifluoromethylbenzene in medium-concentrated PC electrolyte for advanced lithium-ion batteries[J]. Advanced Science, 2023: doi: 10.1002/advs.202206648.. |
42 | YIN Y E, ZHENG T L, CHEN J W, et al. Uncovering the function of a five-membered heterocyclic solvent-based electrolyte for graphite anode at subzero temperature[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202215151. |
43 | ELABD A, KIM J, SETHIO D, et al. Dual functional high donor electrolytes for lithium-sulfur batteries under lithium nitrate free and lean electrolyte conditions[J]. ACS Energy Letters, 2022, 7(8): 2459-2468. |
44 | ZOU Y G, MA Z, LIU G, et al. Non-flammable electrolyte enables high-voltage and wide-temperature lithium-ion batteries with fast charging[J]. Angewandte Chemie, 2023, 62(8): doi: 10.1002/anie.202216189. |
45 | LU J S, XU X J, FAN W Z, et al. Phenyl 4-fluorobenzene sulfonate as a versatile film-forming electrolyte additive for wide-temperature-range NCM811//graphite batteries[J]. ACS Applied Energy Materials, 2022, 5(5): 6324-6334. |
46 | YANG Y L, WANG H P, ZHU C L, et al. Armor-like inorganic-rich cathode electrolyte interphase enabled by the pentafluorophenylboronic acid additive for high-voltage Li||NCM622 batteries[J]. Angewandte Chemie, 2023: doi: 10.1002/anie.202300057: e202300057-e202300057. |
47 | GUO J A, LI J H, FAN Z Q, et al. Rationally designing cathode interphase chemistry via electrolyte additives for high-voltage batteries[J]. ACS Applied Energy Materials, 2023, 6(4): 2448-2461. |
48 | LAN X W, YANG S S, MENG T, et al. A multifunctional electrolyte additive with solvation structure regulation and electrode/electrolyte interface manipulation enabling high-performance Li-ion batteries in wide temperature range[J]. Advanced Energy Materials, 2023: doi: 10.1002/anie.202300057: e202300057-e202300057. |
49 | GUO J L, SUN X L, XU J H, et al. Flavone as a novel multifunctional electrolyte additive to improve the cycle performance of high-voltage LiNi0.5Mn1.5O4 batteries[J]. Applied Surface Science, 2023, 616: doi: 10.1016/j.apsusc.2023.156534. |
50 | LIANG J Y, ZHANG Y Y, XIN S, et al. Mitigating swelling of the solid electrolyte interphase using an inorganic anion switch for low-temperature lithium-ion batteries[J]. Angewandte Chemie, 2023, 62(16): doi: 10.1002/anie.202300384: e202300384-e202300384. |
51 | YUE X Y, ZHANG J, DONG Y T, et al. Reversible Li plating on graphite anodes through electrolyte engineering for fast-charging batteries[J]. Angewandte Chemie, 2023: doi: 10.1002/anie.202302285: e202302285-e202302285. |
52 | WU Y K, ZENG Z Q, LEI S, et al. Passivating lithiated graphite via targeted repair of SEI to inhibit exothermic reactions in early-stage of thermal runaway for safer lithium-ion batteries[J]. Angewandte Chemie, 2023, 62(10): doi: 10.1002/anie.202217774. |
53 | BUECHELE S, ADAMSON A, ELDESOKY A, et al. Identification of redox shuttle generated in LFP/graphite and NMC811/graphite cells[J]. Journal of the Electrochemical Society, 2023, 170(1): doi: 10.1149/1945-7111/acaf44. |
54 | JIANG H Z, YANG C, CHEN M, et al. Electrophilically trapping water for preventing polymerization of cyclic ether towards low-temperature Li metal battery[J]. Angewandte Chemie, 2023, 62(14): doi: 10.1002/anie.202300238: e202300238-e202300238. |
55 | STAVOLA A M, SUN X A, GUIDA D P, et al. Lithiation gradients and tortuosity factors in thick NMC111-argyrodite solid-state cathodes[J]. ACS Energy Letters, 2023, 8(2): 1273-1280. |
56 | JING S H, SHEN H Q, HUANG Y T, et al. Toward the practical and scalable fabrication of sulfide-based all-solid-state batteries: Exploration of slurry process and performance enhancement via the addition of LiClO4[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202214274. |
57 | PARK C, LEE J, LEE S, et al. Organic-additive-derived cathode electrolyte interphase layer mitigating intertwined chemical and mechanical degradation for sulfide-based solid-state batteries[J]. Advanced Energy Materials, 2023: doi: 10.1002/aenm.202203861. |
58 | FENG L, YIN Z W, WANG C W, et al. Glassy/ceramic Li2TiO3/LixByOz analogous "solid electrolyte interphase" to boost 4.5 V LiCoO2 in sulfide-based all-solid-state batteries[J]. Advanced Functional Materials, 2023, 33(16): doi: 10.1002/adfm.202210744. |
59 | DU W B, SHAO Q N, WEI Y Q, et al. High-energy and long-cycling all-solid-state lithium-ion batteries with Li- and Mn-rich layered oxide cathodes and sulfide electrolytes[J]. ACS Energy Letters, 2022, 7(9): 3006-3014. |
60 | WANG K, GU Z Q, XI Z W, et al. Li3TiCl6 as ionic conductive and compressible positive electrode active material for all-solid-state lithium-based batteries[J]. Nature Communications, 2023, 14: 1396. |
61 | MI Y Q, DENG W, HE C H, et al. In situ polymerized 1,3-dioxolane electrolyte for integrated solid-state lithium batteries[J]. Angewandte Chemie, 2023, 62(12): doi: 10.1002/anie.202218621: e202218621-e202218621. |
62 | SHIN H, CHOI S J, CHOI S, et al. In situ gel electrolyte network guaranteeing ionic communication between solid electrolyte and cathode[J]. Journal of Power Sources, 2022, 546: doi: 10.1016/j.jpowsour.2022.231926. |
63 | KIM S Y, CHA H, KOSTECKI R, et al. Composite cathode design for high-energy all-solid-state lithium batteries with long cycle life[J]. ACS Energy Letters, 2023, 8(1): 521-528. |
64 | LIU H W, PARTHASARATHI S K, THI S, et al. A comparative study of polycrystal/single-crystal LiNi0.8Co0.1Mn0.1O2 in all-solid-state Li-ion batteries with halide-based electrolyte under low stacking pressure[J]. Energy Technology, 2023, 11(4): doi: 10.1002/ente.202201439. |
65 | HUANG Y Q, GAO P Y, ZHANG T F, et al. An ultra-stable electrode-solid electrolyte composite for high-performance all-solid-state Li-ion batteries[J]. Small, 2023: doi: 10.1002/smll.202207210. |
66 | SUN C, ZHU J H, LIU B, et al. High-tap-density sulfur cathodes made beyond 400 ℃ for lithium-sulfur cells with balanced gravimetric/volumetric energy densities[J]. ACS Energy Letters, 2023, 8(1): 772-779. |
67 | LI Z N, SAMI I, YANG J, et al. Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium-sulfur batteries[J]. Nature Energy, 2023, 8(1): 84-93. |
68 | KWOK C Y, XU S Q, KOCHETKOV I, et al. High-performance all-solid-state Li2S batteries using an interfacial redox mediator[J]. Energy & Environmental Science, 2023, 16(2): 610-618. |
69 | LU D Z, WANG X Y, HU Y J, et al. Expediting stepwise sulfur conversion via spontaneous built-In electric field and binary sulfiphilic effect of conductive NbB2-MXene heterostructure in lithium-sulfur batteries[J]. Advanced Functional Materials, 2023, 33(15): doi: 10.1002/adfm.202212689. |
70 | ZHANG K, LI X, YANG Y, et al. High loading sulfur cathodes by reactive-type polymer tubes for high-performance lithium-sulfur batteries[J]. Advanced Functional Materials, 2023, 33(11): doi: 10.1002/adfm.202212759. |
71 | VENEZIA E, SALIMI P, LIANG S S, et al. Comparative study of lithium halide-based electrolytes for application in lithium-sulfur batteries[J]. Inorganics, 2023, 11(2): 86. |
72 | HUANG J J, TAO M L, ZHANG W F, et al. Realizing a "solid to solid" process via in situ cathode electrolyte interface (CEI) by solvent-in-salt electrolyte for Li-S batteries[J]. Nano Research, 2023: doi: 10.1007/s12274-023-5443-2. |
73 | CAO D X, SUN X A, LI F, et al. Understanding electrochemical reaction mechanisms of sulfur in all-solid-state batteries through operando and theoretical studies[J]. Angewandte Chemie International Edition, 2023: doi: 10.1002/anie.202302363: e202302363-e202302363. |
74 | YEN Y J, CHUNG S H. Lithium-sulfur cells with a sulfide solid electrolyte/polysulfide cathode interface[J]. Journal of Materials Chemistry A, 2023, 11(9): 4519-4526. |
75 | CONNOR W D, ARISETTY S, YAO K P, et al. Analysis of solvent-free lithium-ion electrodes formed under high pressure and heat[J]. Journal of Power Sources, 2022, 546: doi: 10.1016/j.jpowsour.2022.231972. |
76 | WANG J R, WANG M M, SI J T, et al. Introducing low-tortuosity channels in thick electrode for high-areal-capacity solid polymer battery[J]. Chemical Engineering Journal, 2023, 451: doi: 10.1016/j.cej.2022.138651. |
77 | FIEDLER M, CANGAZ S, HIPPAUF F, et al. Mechanistic insights into the cycling behavior of sulfur dry-film cathodes[J]. Advanced Sustainable Systems, 2023, 7(4): doi: 10.1002/adsu.202200439. |
78 | YAO W L, CHOUCHANE M, LI W K, et al. A 5 V-class cobalt-free battery cathode with high loading enabled by dry coating[J]. Energy & Environmental Science, 2023, 16(4): 1620-1630. |
79 | LIU Q S, AN H W, WANG X F, et al. Effective transport network driven by tortuosity gradient enables high-electrochem-active solid-state batteries[J]. National Science Review, 2023, 10(3): doi: 10.1093/nsr/nwac272. |
80 | MATSUDA S, ONO M, ASAHINA H, et al. Chemical crossover accelerates degradation of lithium electrode in high energy density rechargeable lithium-oxygen batteries[J]. Advanced Energy Materials, 2023, 13(11): doi: 10.1002/aenm.202203062. |
81 | BRADBURY R, DEWALD G F, KRAFT M A, et al. Visualizing reaction fronts and transport limitations in solid-state Li-S batteries via operando neutron imaging[J]. Advanced Energy Materials, 2023: doi: 10.1002/aenm.202203426. |
82 | SADD M, XIONG S Z, BOWEN J R, et al. Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy[J]. Nature Communications, 2023, 14: 854. |
83 | AI Q, CHEN Z Y, ZHANG B Y, et al. High-spatial-resolution quantitative chemomechanical mapping of organic composite cathodes for sulfide-based solid-state batteries[J]. ACS Energy Letters, 2023, 8(2): 1107-1113. |
84 | CHEN H S, YANG S Q, SONG W L, et al. Quantificational 4D visualization and mechanism analysis of inhomogeneous electrolyte wetting[J]. eTransportation, 2023, 16: doi: 10.1016/j.etran.2023.100232. |
85 | ZHANG M H, CHOUCHANE M, SHOJAEE S, et al. Coupling of multiscale imaging analysis and computational modeling for understanding thick cathode degradation mechanisms[J]. Joule, 2023, 7(1): 201-220. |
86 | CELÈ J, FRANGER S, LAMY Y, et al. Minimal architecture lithium batteries: Toward high energy density storage solutions[J]. Small, 2023, 19(16): doi: 10.1002/smll.202207657. |
87 | YANG K, ZHAO L, AN X F, et al. Determining the role of ion transport throughput in solid-state lithium batteries[J]. Angewandte Chemie, 2023: doi: 10.1002/anie.202302586: e202302586-e202302586. |
88 | BERNARD J C, HESTENES J C, MAYILVAHANAN K S, et al. Investigating the influence of polymer binders on liquid phase transport and tortuosity through lithium-ion electrodes[J]. Journal of the Electrochemical Society, 2023, 170(3): doi: 10.1149/1945-7111/acbf7c. |
89 | MENG X Y, LIU Y Z, MA Y F, et al. Diagnosing and correcting the failure of the solid-state polymer electrolyte for enhancing solid-state lithium-sulfur batteries[J]. Advanced Materials, 2023: doi: 10.1002/adma.202212039: e2212039-e2212039. |
90 | FU Y C, SINGH R K, FENG S, et al. Understanding of low-porosity sulfur electrode for high-energy lithium-sulfur batteries[J]. Advanced Energy Materials, 2023, 13(13): doi: 10.1002/aenm.202203386. |
91 | DOBHAL G, WALSH T R, TAWFIK S A. Blocking directional lithium diffusion in solid-state electrolytes at the interface: First-principles insights into the impact of the space charge layer[J]. ACS Applied Materials & Interfaces, 2022, 14(50): 55471-55479. |
92 | NISHIO K, IMAZEKI D, KURUSHIMA K, et al. Immense reduction in interfacial resistance between sulfide electrolyte and positive electrode[J]. ACS Applied Materials & Interfaces, 2022, 14(30): 34620-34626. |
93 | MORINO Y, KANADA S. Degradation analysis by X-ray absorption spectroscopy for LiNbO3 coating of sulfide-based all-solid-state battery cathode[J]. ACS Applied Materials & Interfaces, 2023, 15(2): 2979-2984. |
94 | CHEN Y, CUI Y Y, WANG S M, et al. Durable and adjustable interfacial engineering of polymeric electrolytes for both stable Ni-rich cathodes and high-energy metal anodes[J]. Advanced Materials, 2023: doi: 10.1002/adma.202300982: e2300982-e2300982. |
95 | LUO S T, LIU X Y, ZHANG X A, et al. Nanostructure of the interphase layer between a single Li dendrite and sulfide electrolyte in all-solid-state Li batteries[J]. ACS Energy Letters, 2022, 7(9): 3064-3071. |
96 | BIAO J, HAN B, CAO Y D, et al. Inhibiting formation and reduction of Li2CO3 to LiCx at grain boundaries in garnet electrolytes to prevent Li penetration[J]. Advanced Materials, 2023, 35(12): doi: 10.1002/adma.202208951. |
97 | LUO L S, SUN Z F, GAO H W, et al. Insights into the enhanced interfacial stability enabled by electronic conductor layers in solid-state Li batteries[J]. Advanced Energy Materials, 2023, 13(10): doi: 10.1002/aenm.202203517. |
98 | XU H F, ZHU Q, ZHAO Y, et al. Phase-changeable dynamic conformal electrode/electrolyte interlayer enabling pressure-independent solid-state lithium metal batteries[J]. Advanced Materials, 2023: doi: 10.1002/adma.202212111: e2212111-e2212111. |
99 | CORA S, KEY B, VAUGHEY J, et al. Electrolyte role in SEI evolution at Si in the pre-lithiation stage vs the post-lithiation stage[J]. Journal of the Electrochemical Society, 2023, 170(2): doi: 10.1149/1945-7111/acb617. |
100 | ROSENBACH C, WALTHER F, RUHL J, et al. Visualizing the chemical incompatibility of halide and sulfide-based electrolytes in solid-state batteries[J]. Advanced Energy Materials, 2023, 13(6): doi: 10.1002/aenm.202203673. |
[1] | 雷蕾, 高鹏, 冯娜娜, 蔡坤鹏, 张海, 张扬. 锆酸镧锂固态电解质合成过程多因素影响[J]. 储能科学与技术, 2023, 12(5): 1625-1635. |
[2] | 张吉栋, 杨展, 黄建国. 基于天然纤维素物质的C/TiO2/CuMoO4 微-纳结构复合纤维材料构筑及其电化学性能[J]. 储能科学与技术, 2023, 12(5): 1616-1624. |
[3] | 时文超, 刘宇, 张博冕, 李琪, 韩春华, 麦立强. 电解液添加剂稳定水系电池锌负极界面的研究进展[J]. 储能科学与技术, 2023, 12(5): 1589-1603. |
[4] | 王海, 边煜华, 王佳东, 刘朝阳, 张杰, 姚健, 高宣雯, 刘朝孟, 骆文彬. 退役锂离子电池锂资源回收工艺[J]. 储能科学与技术, 2023, 12(5): 1453-1460. |
[5] | 李金涛, 牟粤, 王静, 邱景义, 明海. 高镍正极材料的稳定改性方法研究综述[J]. 储能科学与技术, 2023, 12(5): 1636-1654. |
[6] | 屈康康, 刘亚华, 洪叠, 沈兆曦, 韩效钊, 张旭. 中性水系有机液流电池正极电解质的研究进展[J]. 储能科学与技术, 2023, 12(5): 1570-1588. |
[7] | 赵玉文, 杨欢, 郭俊朋, 张毅, 孙琦, 张志佳. 磁性金属元素在钠离子电池中的应用[J]. 储能科学与技术, 2023, 12(5): 1332-1347. |
[8] | 易永利, 于冉, 李武, 金翼, 戴哲仁. Mo, Al掺杂的Li7La3Zr2O12 基复合固态电解质的制备及全固态电池性能研究[J]. 储能科学与技术, 2023, 12(5): 1490-1499. |
[9] | 王轩臣, 王达, 刘朝孟, 高宣雯, 骆文彬. 钾离子电池电解液的研究进展及展望[J]. 储能科学与技术, 2023, 12(5): 1409-1426. |
[10] | 余永诗, 夏先明, 黄弘扬, 姚雨, 芮先宏, 钟国彬, 苏伟, 余彦. 钠金属负极人工界面保护层的研究进展[J]. 储能科学与技术, 2023, 12(5): 1380-1391. |
[11] | 李尚倬, 龙禹彤, 刘朝孟, 高宣雯, 骆文彬. 钾离子电池聚阴离子正极材料的研究进展[J]. 储能科学与技术, 2023, 12(5): 1348-1363. |
[12] | 黄渭彬, 张彪, 范金成, 杨伟, 邹汉波, 陈胜洲. ZIF-8复合PEO基固态电解质的制备与改性研究[J]. 储能科学与技术, 2023, 12(4): 1083-1092. |
[13] | 阮晶晶, 刘福园, 李珅珅, 高桂红, 刘艳侠. 碳还原法制备棒状硅基材料及其在锂浆料电池中的应用[J]. 储能科学与技术, 2023, 12(4): 1051-1058. |
[14] | 成雪莉, 张维福, 罗城城, 袁小亚. 一步水热法制备三维石墨烯/Fe3O4 复合材料及其储锂性能[J]. 储能科学与技术, 2023, 12(4): 1066-1074. |
[15] | 申晓宇, 朱璟, 岑官骏, 乔荣涵, 郝峻丰, 田孟羽, 季洪祥, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.12.1—2023.1.31)[J]. 储能科学与技术, 2023, 12(3): 639-653. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||