1 |
ZHANG C, YANG F, KE X Y, et al. Predictive modeling of energy consumption and greenhouse gas emissions from autonomous electric vehicle operations[J]. Applied Energy, 2019, 254: 113597.
|
2 |
陈峥, 李金元, 舒星, 等. 基于混合神经网络的锂离子电池健康状态估算[J]. 昆明理工大学学报(自然科学版), 2022, 47(3): 87-95.
|
|
CHEN Z, LI J Y, SHU X, et al. State of health estimation for lithium-ion battery based on hybrid neural network[J]. Journal of Kunming University of Science and Technology (Natural Science), 2022, 47(3): 87-95.
|
3 |
林名强, 吴登高, 郑耿峰, 等. 基于表面温度和增量容量的锂电池健康状态估计[J]. 汽车工程, 2021, 43(9): 1285-1290, 1284.
|
|
LIN M Q, WU D G, ZHENG G F, et al. Estimation method of state of health of lithium battery based on surface temperature and incremental capacity[J]. Automotive Engineering, 2021, 43(9): 1285-1290, 1284.
|
4 |
SONG Y C, LIU D T, LIAO H T, et al. A hybrid statistical data-driven method for on-line joint state estimation of lithium-ion batteries[J]. Applied Energy, 2020, 261: 114408.
|
5 |
谷平维, 段彬, 康永哲, 等. 基于随机充电数据的锂离子电池容量在线估计[J/OL]. 机械工程学报: 1-11[2023-04-28]. http://kns.cnki.net/kcms/detail/11.2187.TH.20230110.1451.021.html.
|
6 |
SHU X, LI G A, ZHANG Y J, et al. Online diagnosis of state of health for lithium-ion batteries based on short-term charging profiles[J]. Journal of Power Sources, 2020, 471: 228478.
|
7 |
GUO P Y, CHENG Z, YANG L. A data-driven remaining capacity estimation approach for lithium-ion batteries based on charging health feature extraction[J]. Journal of Power Sources, 2019, 412: 442-450.
|
8 |
LI X Y, YUAN C G, LI X H, et al. State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression[J]. Energy, 2020, 190: 116467.
|
9 |
CHEN Z, SUN M M, SHU X, et al. Online state of health estimation for lithium-ion batteries based on support vector machine[J]. Applied Sciences, 2018, 8(6): 925.
|
10 |
LI X Y, WANG Z P, ZHANG L. Co-estimation of capacity and state-of-charge for lithium-ion batteries in electric vehicles[J]. Energy, 2019, 174: 33-44.
|
11 |
熊庆, 邸振国, 汲胜昌. 锂离子电池健康状态估计及寿命预测研究进展综述[J/OL]. 高电压技术: 1-14[2023-04-28]. https://doi.org/10.13336/j.1003-6520.hve.20221843.
|
12 |
CHEN Z, XUE Q, WU Y T, et al. Capacity prediction and validation of lithium-ion batteries based on long short-term memory recurrent neural network[J]. IEEE Access, 2020, 8: 172783-172798.
|
13 |
COUTO L D, SCHORSCH J, JOB N, et al. State of health estimation for lithium ion batteries based on an equivalent-hydraulic model: An iron phosphate application[J]. Journal of Energy Storage, 2019, 21: 259-271.
|
14 |
申江卫, 马文赛, 肖仁鑫, 等. 基于优化高斯过程回归算法的锂离子电池可用容量估算[J]. 中国公路学报, 2022, 35(8): 31-43.
|
|
SHEN J W, MA W S, XIAO R X, et al. Available capacity estimation of lithium-ion batteries based on optimized Gaussian process regression[J]. China Journal of Highway and Transport, 2022, 35(8): 31-43.
|
15 |
舒星, 刘永刚, 申江卫, 等. 基于改进最小二乘支持向量机与Box-Cox变换的锂离子电池容量预测[J]. 机械工程学报, 2021, 57(14): 118-128.
|
|
SHU X, LIU Y G, SHEN J W, et al. Capacity prediction for lithium-ion batteries based on improved least squares support vector machine and box-cox transformation[J]. Journal of Mechanical Engineering, 2021, 57(14): 118-128.
|
16 |
韦荣阳, 毛阗, 高晗, 等. 基于TWP-SVR的锂离子电池健康状态估计[J]. 储能科学与技术, 2022, 11(8): 2585-2599.
|
|
WEI R Y, MAO T, GAO H, et al. Estimation of health state of lithium-ion battery based on TWP-SVR[J]. Energy Storage Science and Technology, 2022, 11(8): 2585-2599.
|
17 |
张萍, 陆霞, 孟庆鹤. 基于多策略麻雀搜索算法的微电网容量优化配置[J]. 电气技术, 2023, 24(1): 1-9.
|
|
ZHANG P, LU X, MENG Q H. Optimal allocation of micro-grid capacity based on multi-strategy sparrow search algorithm[J]. Electrical Engineering, 2023, 24(1): 1-9.
|
18 |
SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4(5): 383-391.
|
19 |
李尧太. 基于AICKF的锂离子动力电池全寿命周期SOC估算研究[D]. 镇江: 江苏大学, 2021.
|
|
LI Y T. Research on life cycle SOC estimation of lithium-ion power battery based on AICKF[D].Zhenjiang: Jiangsu University, 2021.
|