1 |
ZHANG M, YANG D F, DU J X, et al. A review of SOH prediction of Li-ion batteries based on data-driven algorithms[J]. Energies, 2023, 16(7): 3167.
|
2 |
LI A, WEST A C, PREINDL M. Towards unified machine learning characterization of lithium-ion battery degradation across multiple levels: A critical review[J]. Applied Energy, 2022, 316: 119030.
|
3 |
刘芊彤, 邢远秀. 基于VMD-PSO-GRU模型的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2023, 12(1): 236-246.
|
|
LIU Q T, XING Y X. Remaining life prediction of lithium-ion battery based on VMD-PSO-GRU model[J]. Energy Storage Science and Technology, 2023, 12(1): 236-246.
|
4 |
崔树辉, 周贺, 黄振兴, 等. 动力电池梯次利用关键技术与应用综述[J]. 广东电力, 2023, 36(1): 9-19.
|
|
CUI S H, ZHOU H, HUANG Z X, et al. Review of key technologies and applications of echelon utilization of power batteries[J]. Guangdong Electric Power, 2023, 36(1): 9-19.
|
5 |
金鑫, 王凯. 平滑新能源波动的混合储能优化配置[J]. 广东电力, 2021, 34(8): 80-85.
|
|
JIN X, WANG K. Optimal allocation of hybrid energy storage to smooth fluctuation of new energy[J]. Guangdong Electric Power, 2021, 34(8): 80-85.
|
6 |
XU P H, HU X Y, LIU B L, et al. Hierarchical estimation model of state-of-charge and state-of-health for power batteries considering current rate[J]. IEEE Transactions on Industrial Informatics, 2022, 18(9): 6150-6159.
|
7 |
YANG K, CHEN Z W, HE Z J, et al. Online estimation of state of health for the airborne Li-ion battery using adaptive DEKF-based fuzzy inference system[J]. Soft Computing, 2020, 24(24): 18661-18670.
|
8 |
ZHANG J S, JIANG Y C, LI X, et al. Remaining useful life prediction of lithium-ion battery with adaptive noise estimation and capacity regeneration detection[J]. IEEE/ASME Transactions on Mechatronics, 2023, 28(2): 632-643.
|
9 |
王朋凯, 张新燕, 张光昊. 基于ResNet-Bi-LSTM-Attention的锂离子电池剩余使用寿命预测[J]. 储能科学与技术, 2023, 12(4): 1215-1222.
|
|
WANG P K, ZHANG X Y, ZHANG G H. Remaining useful life prediction of lithium-ion batteries based on ResNet-Bi-LSTM-Attention model[J]. Energy Storage Science and Technology, 2023, 12(4): 1215-1222.
|
10 |
MA Y, YAO M H, LIU H C, et al. State of Health estimation and remaining useful life prediction for lithium-ion batteries by improved particle swarm optimization-back propagation neural network[J]. Journal of Energy Storage, 2022, 52: 104750.
|
11 |
李强龙, 孙建瑞, 赵坤, 等. 基于IALO-SVR的锂电池健康状态预测[J]. 电子测量与仪器学报, 2022, 36(1): 204-211.
|
|
LI Q L, SUN J R, ZHAO K, et al. Prediction for the state of health of lithium-ion batteries based on IALO-SVR[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(1): 204-211.
|
12 |
LI P H, ZHANG Z J, GROSU R, et al. An end-to-end neural network framework for state-of-health estimation and remaining useful life prediction of electric vehicle lithium batteries[J]. Renewable and Sustainable Energy Reviews, 2022, 156: 111843.
|
13 |
LIN M Q, ZENG X P, WU J. State of health estimation of lithium-ion battery based on an adaptive tunable hybrid radial basis function network[J]. Journal of Power Sources, 2021, 504: 230063.
|
14 |
WU C L, FU J C, HUANG X R, et al. Lithium-ion battery health state prediction based on VMD and DBO-SVR[J]. Energies, 2023, 16(10): 3993.
|
15 |
CATELANI M, CIANI L, FANTACCI R, et al. Remaining useful life estimation for prognostics of lithium-ion batteries based on recurrent neural network[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-11.
|
16 |
CHE Y H, HU X S, LIN X K, et al. Health prognostics for lithium-ion batteries: Mechanisms, methods, and prospects[J]. Energy & Environmental Science, 2023, 16(2): 338-371.
|
17 |
LI W H, SENGUPTA N, DECHENT P, et al. Online capacity estimation of lithium-ion batteries with deep long short-term memory networks[J]. Journal of Power Sources, 2021, 482: 228863.
|
18 |
FENG H L, SONG D D. A health indicator extraction based on surface temperature for lithium-ion batteries remaining useful life prediction[J]. Journal of Energy Storage, 2021, 34: 102118.
|
19 |
FAN Y C, QIU J S, WANG S L, et al. Incremental capacity curve health-indicator extraction based on Gaussian filter and improved relevance vector machine for lithium-ion battery remaining useful life estimation[J]. Metals, 2022, 12(8): 1331.
|
20 |
XIA F, WANG K G, CHEN J J. State of health and remaining useful life prediction of lithium-ion batteries based on a disturbance-free incremental capacity and differential voltage analysis method[J]. Journal of Energy Storage, 2023, 64: 107161.
|
21 |
HU X S, XU L, LIN X K, et al. Battery lifetime prognostics[J]. Joule, 2020, 4(2): 310-346.
|
22 |
李建林, 李雅欣, 陈光, 等. 退役动力电池健康状态特征提取及评估方法综述[J]. 中国电机工程学报, 2022, 42(4): 1332-1347.
|
|
LI J L, LI Y X, CHEN G, et al. Research on feature extraction and SOH evaluation methods for retired power battery[J]. Proceedings of the CSEE, 2022, 42(4): 1332-1347.
|
23 |
XIONG R, SUN Y, WANG C X, et al. A data-driven method for extracting aging features to accurately predict the battery health[J]. Energy Storage Materials, 2023, 57: 460-470.
|
24 |
KIM M, KIM I, KIM J, et al. Lifetime prediction of lithium ion batteries by using the heterogeneity of graphite anodes[J]. ACS Energy Letters, 2023, 8(7): 2946-2953.
|
25 |
李练兵, 李思佳, 李洁, 等. 基于差分电压和Elman神经网络的锂离子电池RUL预测方法[J]. 储能科学与技术, 2021, 10(6): 2373-2384.
|
|
LI L B, LI S J, LI J, et al. RUL prediction of lithium-ion battery based on differential voltage and Elman neural network[J]. Energy Storage Science and Technology, 2021, 10(6): 2373-2384.
|
26 |
JAEGER H, HAAS H. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication[J]. Science, 2004, 304(5667): 78-80.
|
27 |
刘鹏, 叶润, 闫斌, 等. 一种深度回声状态网络的输入尺度自适应算法[J]. 计算机工程, 2022, 48(2): 92-98, 105.
|
|
LIU P, YE R, YAN B, et al. An adaptive algorithm of input scale for deep echo state networks[J]. Computer Engineering, 2022, 48(2): 92-98, 105.
|
28 |
STORN R, PRICE K. Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359.
|
29 |
张子恒, 吴定会, 杨朝辉, 等. 基于改进差分进化算法的微网容量优化配置[J]. 控制工程, 2023, 30(1): 90-97.
|
|
ZHANG Z H, WU D H, YANG Z H, et al. Optimal allocation of microgrid capacity based on improved differential evolution algorithm[J]. Control Engineering of China, 2023, 30(1): 90-97.
|
30 |
XUE J K, SHEN B. A novel swarm intelligence optimization approach: Sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
|
31 |
冯增喜, 何鑫, 崔巍, 等. 混合随机反向学习和高斯变异的混沌松鼠搜索算法[J]. 计算机集成制造系统, 2023, 29(2): 604-615.
|
|
FENG Z X, HE X, CUI W, et al. Chaos squirrel search algorithm based on random inverse learning and Gaussian mutation[J]. Computer Integrated Manufacturing Systems, 2023, 29(2): 604-615.
|
32 |
WANG J W, DENG Z W, YU T, et al. State of health estimation based on modified Gaussian process regression for lithium-ion batteries[J]. Journal of Energy Storage, 2022, 51: 104512.
|
33 |
FENG H L, YAN H M. State of health estimation of large-cycle lithium-ion batteries based on error compensation of autoregressive model[J]. Journal of Energy Storage, 2022, 52: 104869.
|
34 |
MA Y, SHAN C, GAO J W, et al. A novel method for state of health estimation of lithium-ion batteries based on improved LSTM and health indicators extraction[J]. Energy, 2022, 251: 123973.
|
35 |
JI Y F, CHEN Z W, SHEN Y, et al. An RUL prediction approach for lithium-ion battery based on SADE-MESN[J]. Applied Soft Computing, 2021, 104: 107195.
|