储能科学与技术 ›› 2023, Vol. 12 ›› Issue (10): 3155-3169.doi: 10.19799/j.cnki.2095-4239.2023.0358
林鹏1(), 刘涛2, 金鹏3,4,5(), 王震坡3, 王生捷1, 袁红升1, 马泽1, 狄宇1
收稿日期:
2023-05-25
修回日期:
2023-07-20
出版日期:
2023-10-05
发布日期:
2023-10-09
通讯作者:
金鹏
E-mail:leenzi@163.com;jpzy216@163.com
作者简介:
林鹏(1988—),男,博士,高级工程师,研究方向为储能/动力电池建模、电池管理系统,E-mail:leenzi@163.com;
Peng LIN1(), Tao LIU2, Peng JIN3,4,5(), Zhenpo WANG3, Shengjie WANG1, Hongsheng YUAN1, Ze MA1, Yu DI1
Received:
2023-05-25
Revised:
2023-07-20
Online:
2023-10-05
Published:
2023-10-09
Contact:
Peng JIN
E-mail:leenzi@163.com;jpzy216@163.com
摘要:
实时、准确地获得电池模型的参数可提高电池状态估计的精度。常用的系统辨识算法和智能优化算法不仅实时性差,而且辨识精度低。为了解决等效电路模型的参数辨识及提高等效电路模型参数的辨识精度,本文通过直接离散的方法建立了能够同时辨识二阶RC(resistance-capacitance)等效电路模型和PNGV(partnership for a new generation of vehicles)模型参数的差分方程。基于多新息算法辨识理论,提出了带遗忘因子的多新息辅助模型扩展递推最小二乘(FMIAELS)算法。FMIAELS算法只需利用电池的电流及端电压即可实现等效电路模型参数的实时、精确辨识。实验验证结果表明,在不同温度、工况和老化程度下,FMIAELS算法可精确地辨识电池的模型参数,误差约为常用的系统辨识算法和智能优化算法的1/3。FMIAELS算法也能实现开路电压(OCV)的精确辨识,在不同脉冲下辨识的OCV的精度也明显优于常用的系统辨识算法和智能优化算法,其平均误差仅有0.22%。
中图分类号:
林鹏, 刘涛, 金鹏, 王震坡, 王生捷, 袁红升, 马泽, 狄宇. 基于多新息辨识算法的锂离子电池等效电路模型参数辨识[J]. 储能科学与技术, 2023, 12(10): 3155-3169.
Peng LIN, Tao LIU, Peng JIN, Zhenpo WANG, Shengjie WANG, Hongsheng YUAN, Ze MA, Yu DI. Identification of lithium-ion battery equivalent circuit model parameters based on the multi-innovation identification algorithm[J]. Energy Storage Science and Technology, 2023, 12(10): 3155-3169.
表1
在不同脉冲作用下二阶RC等效电路模型的仿真误差"
指标 | 脉冲 | 算法 | ||
---|---|---|---|---|
MPN | MNP | HPPC | ||
MAE/mV | 1.18 | 1.88 | 3.00 | FMIAELS |
5.80 | 6.60 | 6.39 | RELS | |
3.18 | 4.24 | 4.09 | FRLS | |
545.69 | 530.2 | 120.82 | RSNA | |
295.83 | 286.57 | 72.44 | MRAS | |
8.98 | 9.42 | 7.14 | ADE | |
RMSE/mV | 1.89 | 3.09 | 4.72 | FMIAELS |
6.90 | 7.60 | 8.67 | RELS | |
3.85 | 4.76 | 7.35 | FRLS | |
1996.12 | 1938.31 | 331.05 | RSNA | |
1077.18 | 1039.89 | 305.25 | MRAS | |
4.86 | 11.65 | 8.10 | ADE | |
WMAPE/% | 0.04 | 0.06 | 0.09 | FMIAELS |
0.18 | 0.21 | 0.29 | RELS | |
0.10 | 0.13 | 0.13 | FRLS | |
16.85 | 16.37 | 3.72 | RSNA | |
9.13 | 8.85 | 2.23 | MRAS | |
0.19 | 0.29 | 0.22 | ADE |
表2
在不同脉冲作用下PNGV模型的仿真误差"
指标 | 脉冲 | 算法 | ||
---|---|---|---|---|
MPN | MNP | HPPC | ||
MAE/mV | 33.13 | 33.62 | 75.59 | FMIAELS |
36.10 | 35.87 | 78.20 | RELS | |
38.01 | 34.73 | 84.83 | FRLS | |
5923.89 | 5174.48 | 9208.49 | RSNA | |
5868.99 | 5108.72 | 8931.14 | MRAS | |
31.69 | 29.34 | 73.39 | ADE | |
RMSE/mV | 38.38 | 37.44 | 78.34 | FMIAELS |
41.10 | 40.91 | 81.40 | RELS | |
44.00 | 40.78 | 88.19 | FRLS | |
21630.03 | 18884.44 | 25434.77 | RSNA | |
21407.39 | 18756.21 | 25195.59 | MRAS | |
36.45 | 32.74 | 77.16 | ADE | |
WMAPE/% | 0.97 | 1.04 | 2.33 | FMIAELS |
1.13 | 1.27 | 2.52 | RELS | |
1.17 | 1.07 | 2.61 | FRLS | |
182.88 | 160.15 | 283.57 | RSNA | |
181.19 | 158.11 | 275.03 | MRAS | |
0.98 | 0.91 | 2.26 | ADE |
1 | FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. |
2 | 孙振宇, 王震坡, 刘鹏, 等. 新能源汽车动力电池系统故障诊断研究综述[J]. 机械工程学报, 2021, 57(14): 87-104. |
SUN Z Y, WANG Z P, LIU P, et al. Overview of fault diagnosis in new energy vehicle power battery system[J]. Journal of Mechanical Engineering, 2021, 57(14): 87-104. | |
3 | 王震坡, 王秋诗, 刘鹏, 等. 大数据驱动的动力电池健康状态估计方法综述[J]. 机械工程学报, 2023, 59(2): 151-168. |
WANG Z P, WANG Q S, LIU P, et al. Review on techniques for power battery state of health estimation driven by big data methods[J]. Journal of Mechanical Engineering, 2023, 59(2): 151-168. | |
4 | 王放放, 冯祥明, 赵光金, 等. 电化学阻抗谱识别不同化学体系退役动力锂离子电池[J]. 储能科学与技术, 2023, 12(2): 609-614. |
WANG F F, FENG X M, ZHAO G J, et al. Identification of retired power lithium-ion batteries of chemical systems by electrochemical impedance spectroscopy[J]. Energy Storage Science and Technology, 2023, 12(2): 609-614. | |
5 | 胡晓松, 唐小林. 电动车辆锂离子动力电池建模方法综述[J]. 机械工程学报, 2017, 53(16): 20-31. |
HU X S, TANG X L. Review of modeling techniques for lithium-ion traction batteries in electric vehicles[J]. Journal of Mechanical Engineering, 2017, 53(16): 20-31. | |
6 | LIN P, JIN P, ZHANG H Y. Identification and fast measurement method of open-circuit voltage[J]. Journal of the Electrochemical Society, 2023, 170(3): 030525. |
7 | 王春雨, 崔纳新, 李长龙, 等. 基于电热耦合模型和多参数约束的动力电池峰值功率预测[J]. 机械工程学报, 2019, 55(20): 28-35. |
WANG C Y, CUI N X, LI C L, et al. State of power prediction based on electro-thermal battery model and multi-parameter constraints for lithium-ion battery[J]. Journal of Mechanical Engineering, 2019, 55(20): 28-35. | |
8 | LIN P, JIN P, HONG J C, et al. Battery voltage and state of power prediction based on an improved novel polarization voltage model[J]. Energy Reports, 2020, 6: 2299-2308. |
9 | 朱瑞, 段彬, 温法政, 等. 基于分布式最小二乘法的锂离子电池建模及参数辨识[J]. 机械工程学报, 2019, 55(20): 85-93. |
ZHU R, DUAN B, WEN F Z, et al. Lithium-ion battery modeling and parameter identification based on decentralized least squares method[J]. Journal of Mechanical Engineering, 2019, 55(20): 85-93. | |
10 | 盛军, 付一民, 俞会根. 储能软包大模组结构稳定性[J]. 储能科学与技术, 2023, 12(2): 579-584. |
SHENG J, FU Y M, YU H G. Structure simulation of large soft pack module for energy storage[J]. Energy Storage Science and Technology, 2023, 12(2): 579-584. | |
11 | LI J H, KLEE BARILLAS J, GUENTHER C, et al. Sequential Monte Carlo filter for state estimation of LiFePO4 batteries based on an online updated model[J]. Journal of Power Sources, 2014, 247: 156-162. |
12 | LAI X, GAO W K, ZHENG Y J, et al. A comparative study of global optimization methods for parameter identification of different equivalent circuit models for Li-ion batteries[J]. Electrochimica Acta, 2019, 295: 1057-1066. |
13 | WEI X Z, ZHU B, XU W. Internal resistance identification in vehicle power lithium-ion battery and application in lifetime evaluation[C]//2009 International Conference on Measuring Technology and Mechatronics Automation. April 11-12, 2009, Zhangjiajie, China. IEEE, 2009: 388-392. |
14 | CASTANO S, GAUCHIA L, VONCILA E, et al. Dynamical modeling procedure of a Li-ion battery pack suitable for real-time applications[J]. Energy Conversion and Management, 2015, 92: 396-405. |
15 | YAO S G, LIAO P, XIAO M, et al. Equivalent circuit modeling and simulation of the zinc nickel single flow battery[J]. AIP Advances, 2017, 7(5): 055112. |
16 | LIU C Z, LIU W Q, WANG L Y, et al. A new method of modeling and state of charge estimation of the battery[J]. Journal of Power Sources, 2016, 320: 1-12. |
17 | 李泉. 锂离子动力电池管理系统关键技术研究[D]. 长沙: 湖南大学, 2017. |
LI Q. Research on key technologies for the management system of lithium-ion power battery[D]. Changsha: Hunan University, 2017. | |
18 | 杨阳, 汤桃峰, 秦大同, 等. 电动汽车锂电池PNGV等效电路模型与SOC估算方法[J]. 系统仿真学报, 2012, 24(4): 938-942. |
YANG Y, TANG T F, QIN D T, et al. PNGV equivalent circuit model and SOC estimation algorithm of lithium batteries for electric vehicle[J]. Journal of System Simulation, 2012, 24(4): 938-942. | |
19 | ZHANG X, WANG Y J, WU J, et al. A novel method for lithium-ion battery state of energy and state of power estimation based on multi-time-scale filter[J]. Applied Energy, 2018, 216: 442-451. |
20 | ZHANG C, ALLAFI W, DINH Q, et al. Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique[J]. Energy, 2018, 142: 678-688. |
21 | SONG Q, MI Y X, LAI W X. A novel variable forgetting factor recursive least square algorithm to improve the anti-interference ability of battery model parameters identification[J]. IEEE Access, 2019, 7: 61548-61557. |
22 | 黄凯, 郭永芳, 李志刚. 基于信息反馈粒子群的高精度锂离子电池模型参数辨识[J]. 电工技术学报, 2019, 34(S1): 378-387. |
HUANG K, GUO Y F, LI Z G. High precision parameter identification of lithium-ion battery model based on feedback particle swarm optimization algorithm[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 378-387. | |
23 | 刘芳, 马杰, 苏卫星, 等. 基于模型参数在线辨识技术的SOC估算方法[J]. 东北大学学报(自然科学版), 2020, 41(11): 1543-1549. |
LIU F, MA J, SU W X, et al. Model parameter online identification based SOC estimation method[J]. Journal of Northeastern University (Natural Science), 2020, 41(11): 1543-1549. | |
24 | 柳应全, 鲁军勇, 龙鑫林, 等. 储能用蓄电池模型参数的动态辨识[J]. 国防科技大学学报, 2019, 41(5): 87-92. |
LIU Y Q, LU J Y, LONG X L, et al. Dynamic identification of model parameters for energy storage batteries[J]. Journal of National University of Defense Technology, 2019, 41(5): 87-92. | |
25 | 刘志聪, 张彦会. 锂离子电池参数辨识及荷电状态的估算[J]. 储能科学与技术, 2022, 11(11): 3613-3622. |
LIU Z C, ZHANG Y H. Parameter identification and state of charge estimation of lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(11): 3613-3622. | |
26 | 杜帮华, 张宇, 吴铁洲, 等. 梯次利用锂离子电池等效模型参数在线辨识方法[J]. 储能科学与技术, 2021, 10(1): 342-348. |
DU B H, ZHANG Y, WU T Z, et al. An online identification method for equivalent model parameters of aging lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(1): 342-348. | |
27 | 熊瑞. 基于数据模型融合的电动车辆动力电池组状态估计研究[D]. 北京: 北京理工大学, 2014. |
XIONG R. Estimation of battery pack state for electric vehicles using model-data fusion approach[D]. Beijing: Beijing Institute of Technology, 2014. | |
28 | LIU X Y, LI W L, ZHOU A G. PNGV equivalent circuit model and SOC estimation algorithm for lithium battery pack adopted in AGV vehicle[J]. IEEE Access, 2018, 6: 23639-23647. |
29 | PAI K J. A reformatory model incorporating PNGV battery and three-terminal-switch models to design and implement feedback compensations of LiFePO4 battery chargers[J]. Electronics, 2019, 8(2): 126. |
30 | 王维强, 孙永强, 何源, 等. 磷酸铁锂锂离子电池用可变参数PNGV模型[J]. 电池, 2020, 50(1): 40-44. |
WANG W Q, SUN Y Q, HE Y, et al. PNGV model based on variable parameter for lithium iron phosphate Li-ion battery[J]. Battery Bimonthly, 2020, 50(1): 40-44. | |
31 | 陈正, 王志得, 牟文彪, 等. 基于PNGV模型与自适应卡尔曼滤波的铅炭电池荷电状态评估[J]. 储能科学与技术, 2023, 12(3): 941-950. |
CHEN Z, WANG Z D, MOU W B, et al. State-of-charge estimation of lead-carbon batteries based on the PNGV model and an adaptive Kalman filter algorithm[J]. Energy Storage Science and Technology, 2023, 12(3): 941-950. | |
32 | XIAO R X, SHEN J W, LI X Y, et al. Comparisons of modeling and state of charge estimation for lithium-ion battery based on fractional order and integral order methods[J]. Energies, 2016, 9(3): 184. |
33 | MENG J W, BOUKHNIFER M, DIALLO D. Comparative study of lithium-ion battery open-circuit-voltage online estimation methods[J]. IET Electrical Systems in Transportation, 2020, 10(2): 162-169. |
34 | 刘伟龙, 王丽芳, 廖承林, 等. 充电模态下电动汽车动力电池模型辨识[J]. 电工技术学报, 2017, 32(11): 198-207. |
LIU W L, WANG L F, LIAO C L, et al. Parameters identification method of battery model for electric vehicles under the charging mode[J]. Transactions of China Electrotechnical Society, 2017, 32(11): 198-207. | |
35 | ABOUDA S E, ELLOUMI M, KOUBAA Y, et al. Design of parametric estimation algorithm for Hammerstein-Wiener mathematical models[C]//2019 19th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA). March 24-26, 2019, Sousse, Tunisia. IEEE, 2019: 371-375. |
36 | DING F, CHEN T W. Performance analysis of multi-innovation gradient type identification methods[J]. Automatica, 2007, 43(1): 1-14. |
37 | DING F, LIU P X, LIU G J. Multiinnovation least-squares identification for system modeling[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2010, 40(3): 767-778. |
38 | 刘艳君, 谢莉. 非均匀采样多率ARMAX系统RELS算法性能分析[J]. 控制工程, 2009, 16(4): 409-411, 415. |
LIU Y J, XIE L. Performance analysis of RELS identification for non-uniformly sampled mutlirate ARMAX systems[J]. Control Engineering of China, 2009, 16(4): 409-411, 415. | |
39 | GUO L, LJUNG L, PRIOURET P. Performance analysis of the forgetting factor RLS algorithm[J]. International Journal of Adaptive Control and Signal Processing, 1993, 7(6): 525-537. |
40 | CAMPI M. Performance of RLS Identification Algorithms with Forgetting Factor: A -Mixing Approach[J]. Journal of Mathematical Systems Estimation and Control, 1997, 7(1): 29-54. |
41 | PALEOLOGU C, BENESTY J, CIOCHINĂ S. A practical variable forgetting factor recursive least-squares algorithm[C]//2014 11th International Symposium on Electronics and Telecommunications (ISETC). November 14-15, 2014, Timisoara, Romania. IEEE, 2015: 1-4. |
42 | BERCU B, GODICHON A, PORTIER B. An efficient stochastic Newton algorithm for parameter estimation in logistic regressions[J]. SIAM Journal on Control and Optimization, 2020, 58(1): 348-367. |
43 | 曹鹏飞, 罗雄麟. 双率系统辅助模型框架下的随机牛顿递推辨识[J]. 控制与决策, 2015, 30(1): 117-124. |
CAO P F, LUO X L. Auxiliary-model-based stochastic Newton recursive identification for dual-rate system[J]. Control and Decision, 2015, 30(1): 117-124. | |
44 | LANDAU I. Unbiased recursive identification using model reference adaptive techniques[J]. IEEE Transactions on Automatic Control, 1976, 21(2): 194-202. |
45 | RAVI TEJA A V, VERMA V, CHAKRABORTY C. A new formulation of reactive-power-based model reference adaptive system for sensorless induction motor drive[J]. IEEE Transactions on Industrial Electronics, 2015, 62(11): 6797-6808. |
46 | QIN A K, HUANG V L, SUGANTHAN P N. Differential evolution algorithm with strategy adaptation for global numerical optimization[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(2): 398-417. |
47 | CUI L Z, LI G H, LIN Q Z, et al. Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations[J]. Computers & Operations Research, 2016, 67: 155-173. |
48 | LIN P, JIN P, ZOU A X, et al. Real-time identification of partnership for a new generation of vehicles battery model parameters based on the model reference adaptive system[J]. International Journal of Energy Research, 2021, 45(6): 9351-9368. |
49 | 郑旭, 郭汾. 动力电池模型综述[J]. 电源技术, 2019, 43(3): 521-524. |
ZHENG X, GUO F. Overview of power battery model[J]. Chinese Journal of Power Sources, 2019, 43(3): 521-524. | |
50 | HE H W, XIONG R, GUO H Q, et al. Comparison study on the battery models used for the energy management of batteries in electric vehicles[J]. Energy Conversion and Management, 2012, 64: 113-121. |
[1] | 李悦, 王博, 吴楠. 石墨烯/Si/SiO x 纳米复合材料的制备及储锂性能研究[J]. 储能科学与技术, 2023, 12(9): 2752-2759. |
[2] | 曾少鸿, 吴伟雄, 刘吉臻, 汪双凤, 叶石丰, 冯振宇. 锂离子电池浸没式冷却技术研究综述[J]. 储能科学与技术, 2023, 12(9): 2888-2903. |
[3] | 李纪伟, 刘睿涵, 吕桃林, 潘隆, 马常军, 李清波, 赵芝芸, 杨文, 解晶莹. 基于局部离群点检测和标准差方法的锂离子电池组早期故障诊断[J]. 储能科学与技术, 2023, 12(9): 2917-2926. |
[4] | 黄晓伟, 李少鹏, 张校刚. 负极补锂锂化裕度对电芯性能的影响及机理研究[J]. 储能科学与技术, 2023, 12(9): 2727-2734. |
[5] | 陈欣, 李云伍, 梁新成, 李法霖, 张志冬. 基于模态分解的Transformer-GRU联合电池健康状态估计[J]. 储能科学与技术, 2023, 12(9): 2927-2936. |
[6] | 江婉薇, 梁呈景, 钱历, 刘梅城, 朱孟想, 马骏. 锡基三维石墨烯泡沫调控及其锂电池负极性能[J]. 储能科学与技术, 2023, 12(9): 2746-2751. |
[7] | 高欣, 王若谷, 高文菁, 邓泽军, 梁睿祺, 杨騉. 基于运行数据的储能电站电池组一致性评估方法[J]. 储能科学与技术, 2023, 12(9): 2937-2945. |
[8] | 官亦标, 沈进冉, 刘家亮, 渠展展, 高飞, 刘施阳, 郭翠静, 周淑琴, 付珊珊. 以安全高质量应用为导向的储能锂离子电池综合性能评价标准[J]. 储能科学与技术, 2023, 12(9): 2946-2953. |
[9] | 周向阳, 胡颖杰, 梁家浩, 周其杰, 文康, 陈松, 杨娟, 唐晶晶. 天然鳞片石墨球化尾料的高性能负极材料制备及储锂特性研究[J]. 储能科学与技术, 2023, 12(9): 2767-2777. |
[10] | 唐程波, 锁要红, 何昭坤. 基于正弦函数的液冷板上流体流向对锂离子电池散热性能的影响[J]. 储能科学与技术, 2023, 12(8): 2547-2555. |
[11] | 狄云, 周正柱, 党会鸿, 葛志浩. 基于ECM的电芯电-热耦合建模与验证[J]. 储能科学与技术, 2023, 12(8): 2638-2648. |
[12] | 左安昊, 方儒卿, 李哲. 锂离子电池单颗粒动力学表征方法综述[J]. 储能科学与技术, 2023, 12(8): 2457-2481. |
[13] | 陈满, 程志翔, 赵春朋, 彭鹏, 雷旗开, 金凯强, 王青松. 锂离子电池储能集装箱爆炸危害数值模拟[J]. 储能科学与技术, 2023, 12(8): 2594-2605. |
[14] | 郭煜, 王亦伟, 钟隽, 杜进桥, 田杰, 李艳, 蒋方明. 基于增量容量曲线的锂离子电池微内短路故障诊断方法[J]. 储能科学与技术, 2023, 12(8): 2536-2546. |
[15] | 黄永浩, 臧国景, 朱霨亚, 廖友好, 李伟善. LiF添加剂改善含锂陶瓷隔膜与4.35 V LiNi0.8Co0.1Mn0.1O2 正极的界面稳定性[J]. 储能科学与技术, 2023, 12(8): 2361-2369. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||