1 |
常修亮, 郑莉莉, 韦守李, 等. 锂离子电池热失控仿真研究进展[J]. 储能科学与技术, 2021, 10(6): 2191-2199.
|
|
CHANG X L, ZHENG L L, WEI S L, et al. Progress in thermal runaway simulation of lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(6): 2191-2199.
|
2 |
李潇, 陈江英, 李翔晟. 基于新型流道液冷板的动力电池热管理性能[J]. 电源技术, 2020, 44(10): 1438-1442.
|
|
LI X, CHEN J Y, LI X S. Study on thermal management performance of power batteries based on new flow passage liquid cooling plate[J]. Chinese Journal of Power Sources, 2020, 44(10): 1438-1442.
|
3 |
孔为, 金劲涛, 陆西坡, 等. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265.
|
|
KONG W, JIN J T, LU X P, et al. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel[J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265.
|
4 |
沈华平, 竺玉强, 杨梓堙, 等. 锂离子电池模组液冷散热设计[J]. 电源技术, 2022, 46(3): 271-275.
|
|
SHEN H P, ZHU Y Q, YANG Z Y, et al. Lithium-ion battery module liquid cooling heat dissipation design[J]. Chinese Journal of Power Sources, 2022, 46(3): 271-275.
|
5 |
胡兴军, 惠政, 郭鹏, 等. 锂离子电池组间接接触液冷散热结构研究[J]. 湖南大学学报(自然科学版), 2019, 46(2): 44-50.
|
|
HU X J, HUI Z, GUO P, et al. Research on the indirect contact liquid cooling heat dissipation structure of lithium-ion battery pack[J]. Journal of Hunan University (Natural Sciences), 2019, 46(2): 44-50.
|
6 |
刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273.
|
|
LIU X X, SUN A L, TIAN C. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate[J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273.
|
7 |
王学章, 李科群. 锂电池叉流流道液冷结构设计及散热特性分析[J]. 物理学报, 2022, 71(18): 266-275.
|
|
WANG X Z, LI K Q. Liquid-cooled structure design and heat dissipation characteristics analysis of cross-flow channels for lithium batteries[J]. Acta Physica Sinica, 2022, 71(18): 266-275.
|
8 |
XU X M, TONG G Y, LI R Z. Numerical study and optimizing on cold plate splitter for lithium battery thermal management system[J]. Applied Thermal Engineering, 2020, 167: doi: 10.1016/j.applthermaleng.2019.114787.
|
9 |
XIA G D, CAO L, BI G L. A review on battery thermal management in electric vehicle application[J]. Journal of Power Sources, 2017, 367: 90-105.
|
10 |
WU C H, WANG Z P, BAO Y B, et al. Investigation on the performance enhancement of baffled cold plate based battery thermal management system[J]. Journal of Energy Storage, 2021, 41: doi: 10.1016/j.est.2021.102882.
|
11 |
陈诚. 新能源汽车方形动力锂电池散热及优化设计研究[D]. 上海: 上海应用技术大学, 2020.
|
|
CHEN C. Research on heat dissipation and optimization design of square power lithium battery for new energy vehicle[D].Shanghai: Shanghai Institute of Technology, 2020.
|
12 |
DONG F, CHENG Z Y, SONG D C, et al. Investigation and optimization on cooling performance of serial-parallel mini-channel structure for liquid-cooled soft pack batteries[J]. Numerical Heat Transfer, Part A: Applications, 2021, 80(7): 368-387.
|
13 |
KONG W, ZHU K J, LU X P, et al. Enhancement of lithium-ion battery thermal management with the divergent-shaped channel cold plate[J]. Journal of Energy Storage, 2021, 42: doi: 10.1016/j.est.2021.103027.
|
14 |
LI Y B, ZHOU Z F, WU W T. Three-dimensional thermal modeling of internal shorting process in a 20 Ah lithium-ion polymer battery[J]. Energies, 2020, 13(4): doi: 10.3390/en13041013.
|
15 |
PATIL M S, SEO J H, PANCHAL S, et al. Numerical study on sensitivity analysis of factors influencing liquid cooling with double cold-plate for lithium-ion pouch cell[J]. International Journal of Energy Research, 2021, 45(2): 2533-2559.
|
16 |
WANG J F, LIU X D, LIU F, et al. Numerical optimization of the cooling effect of the bionic spider-web channel cold plate on a pouch lithium-ion battery[J]. Case Studies in Thermal Engineering, 2021, 26: doi: 10.1016/j.csite.2021.101124.
|
17 |
KARTHIK A, KALITA P, GARG A, et al. A Novel MOGA approach for power saving strategy and optimization of maximum temperature and maximum pressure for liquid cooling type battery thermal management system[J]. International Journal of Green Energy, 2021, 18(1): 80-89.
|
18 |
AMALESH T, NARASIMHAN N L. Introducing new designs of minichannel cold plates for the cooling of lithium-ion batteries[J]. Journal of Power Sources, 2020, 479: doi: 10.1016/j.jpowsour. 2020.228775.
|
19 |
MONIKA K, DATTA S P. Comparative assessment among several channel designs with constant volume for cooling of pouch-type battery module[J]. Energy Conversion and Management, 2022, 251: doi: 10.1016/j.enconman.2021.114936.
|
20 |
张继龙, 陈江英, 李翔晟. 基于多蛇形变结构流道冷却板的散热性能研究[J]. 电源技术, 2021, 45(2): 190-194.
|
|
ZHANG J L, CHEN J Y, LI X S. Research on heat dissipation performance of cooling plate based on multi-serpentine variable structure flow channel[J]. Chinese Journal of Power Sources, 2021, 45(2): 190-194.
|
21 |
SHENG L, SU L, ZHANG H, et al. Numerical investigation on a lithium ion battery thermal management utilizing a serpentine-channel liquid cooling plate exchanger[J]. International Journal of Heat and Mass Transfer, 2019, 141: 658-668.
|
22 |
HUO Y T, RAO Z H, LIU X J, et al. Investigation of power battery thermal management by using mini-channel cold plate[J]. Energy Conversion and Management, 2015, 89: 387-395.
|
23 |
LIU H Q, CHIKA E Z, ZHAO J Y. Investigation into the effectiveness of nanofluids on the mini-channel thermal management for high power lithium ion battery[J]. Applied Thermal Engineering, 2018, 142: 511-523.
|
24 |
李涛. 纯电动汽车锂离子电池热效应及电池组散热结构优化[D]. 重庆: 重庆大学, 2013.
|
|
LI T. Thermal effect of lithium-ion battery in pure electric vehicle and optimization of heat dissipation structure of battery pack[D].Chongqing: Chongqing University, 2013.
|