储能科学与技术 ›› 2024, Vol. 13 ›› Issue (2): 495-502.doi: 10.19799/j.cnki.2095-4239.2023.0535

• 储能系统与工程 • 上一篇    下一篇

隔热材料布局方式对280 Ah磷酸铁锂电池热失控传播抑制效果的影响

雷旗开1(), 余胤2, 彭鹏1, 陈满1, 金凯强2, 王青松2()   

  1. 1.南方电网调峰调频发电有限公司储能科研院,广东 广州 510000
    2.中国科学技术大学火灾 科学国家重点实验室,安徽 合肥 230026
  • 收稿日期:2023-08-09 修回日期:2023-09-21 出版日期:2024-02-28 发布日期:2024-03-01
  • 通讯作者: 王青松 E-mail:253432239@qq.com;pinew@ustc.edu.cn
  • 作者简介:雷旗开(1995—),男,硕士,研究方向为储能科学与技术,E-mail:253432239@qq.com
  • 基金资助:
    国家重点研发计划项目课题(2021YFB2402004)

Effect of thermal insulation material layout on thermal runaway propagation inhibition effect of 280 Ah lithium-iron phosphate battery

Qikai LEI1(), Yin YU2, Peng PENG1, Man CHEN1, Kaiqiang JIN2, Qingsong WANG2()   

  1. 1.China Southern Power Grid Power Generation Co. , Ltd Energy Storage Research Institute, Guangzhou 510000, Guangdong, China
    2.State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, Anhui, China
  • Received:2023-08-09 Revised:2023-09-21 Online:2024-02-28 Published:2024-03-01
  • Contact: Qingsong WANG E-mail:253432239@qq.com;pinew@ustc.edu.cn

摘要:

锂离子电池的热失控传播可能带来火灾甚至爆炸风险,这已成为阻止其进一步广泛应用的迫切问题。在本研究中,使用了玻纤气凝胶和陶瓷纤维毡来抑制电池的热失控传播,探索了隔热材料的种类及厚度对抑制效果的影响。进一步设计了单块阻隔和间隔阻隔两种模式,前者表示每隔一块电池放置一片隔热材料,后者表示每隔两块电池放置一片隔热材料。研究结果显示,在单块阻隔模组中,2 mm和1 mm厚度的玻纤气凝胶都能有效阻止热失控传播,受保护电池的前后表面温升分别为193.6 ℃、86.1 ℃以及222.6 ℃、86.8 ℃;而2 mm厚度的陶瓷纤维毡则只能延缓热失控传播的速度,无法完全阻止。在间隔阻隔模组中,使用2 mm玻纤气凝胶进行阻隔时,受保护电池的前后表面温升分别为168.3 ℃、56 ℃,这说明在遭受滥用条件时,间隔阻隔模组对电池的保护效果更加优异。本方案在一定程度上缓解了隔热材料使用及模组能量密度之间的矛盾,对锂离子电池模组的安全设计具有重要的理论指导意义。

关键词: 锂离子电池安全, 热失控传播, 预防, 隔热材料, 布局方式

Abstract:

The thermal runaway propagation (TRP) of Li-ion batteries poses a substantial fire and explosion risks, preventing their further widespread application. Herein, glass fiber aerogel and ceramic fiber mats are used to suppress the TRP in batteries, exploring the influence of the type and thickness of the insulation material on the suppression effect. Two module layout methods are designed: single barrier and spacer barrier modules. The former involves placing a piece of insulation material in every other battery, while the latter involves placing a piece of insulation material in every two batteries. Research results show that in a single barrier module, glass fiber aerogels with a thickness of 2 and 1 mm can effectively prevent TRP, and the temperature rises of the front and back surfaces of the protected battery are 193.6℃, 86.1 ℃, and 222.6 ℃, 86.8 ℃, respectively. However, a 2 mm-thick ceramic fiber felt can only delay the speed of TRP butnot completely prevent it. In the spacer barrier module, using a 2 mm glass fiber aerogel as a barrier results in a temperature rise of 168.3 ℃ and 56 ℃ on the front and back surfaces of the protected battery, demonstrating that the spacer barrier module offers an enhanced protective effect on the battery under abuse conditions. To a certain extent, the results of this study alleviate the contradiction between the use of thermal insulation materials and the energy density of modules. The findings hold important theoretical guidance for the safety design of lithium-ion battery modules.

Key words: lithium-ion battery, thermal runaway propagation, prevent, thermal insulation material, layout mode

中图分类号: