1 |
FENG X N, ZHENG S Q, REN D S, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64.
|
2 |
ZHANG Q S, LIU T T, WANG Q. Experimental study on the influence of different heating methods on thermal runaway of lithium-ion battery[J]. Journal of Energy Storage, 2021, 42: 103063.
|
3 |
MAO B B, CHEN H D, CUI Z X, et al. Failure mechanism of the lithium ion battery during nail penetration[J]. International Journal of Heat and Mass Transfer, 2018, 122: 1103-1115.
|
4 |
FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267.
|
5 |
REN D S, FENG X N, LIU L S, et al. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition[J]. Energy Storage Materials, 2021, 34: 563-573.
|
6 |
Feng X N, Zheng S Q, Ren D S, et al. Key characteristics for thermal runaway of Li-ion batteries[J]. Energy Procedia. 2019, 158: 4684-4689.
|
7 |
YU Y, HUANG Z H, MEI W X, et al. Preventing effect of different interstitial materials on thermal runaway propagation of large-format lithium iron phosphate battery module[J]. Journal of Energy Storage, 2023, 63: 107082.
|
8 |
MAO B B, HUANG P F, CHEN H D, et al. Self-heating reaction and thermal runaway criticality of the lithium ion battery[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119178.
|
9 |
WU T Q, CHEN H D, WANG Q S, et al. Comparison analysis on the thermal runaway of lithium-ion battery under two heating modes[J]. Journal of Hazardous Materials, 2018, 344: 733-741.
|
10 |
WILKE S, SCHWEITZER B, KHATEEB S, et al. Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: An experimental study[J]. Journal of Power Sources, 2017, 340: 51-59.
|
11 |
ZHAO C R, CAO W J, DONG T, et al. Thermal behavior study of discharging/charging cylindrical lithium-ion battery module cooled by channeled liquid flow[J]. International Journal of Heat and Mass Transfer, 2018, 120: 751-762.
|
12 |
KSHETRIMAYUM K S, YOON Y G, GYE H R, et al. Preventing heat propagation and thermal runaway in electric vehicle battery modules using integrated PCM and micro-channel plate cooling system[J]. Applied Thermal Engineering, 2019, 159: 113797.
|
13 |
ZHANG L, DUAN Q L, XU J J, et al. Experimental investigation on suppression of thermal runaway propagation of lithium-ion battery by intermittent spray[J]. Journal of Energy Storage, 2023, 58: 106434.
|
14 |
NIU H C, CHEN C X, LIU Y H, et al. Mitigating thermal runaway propagation of NCM 811 prismatic batteries via hollow glass microspheres plates[J]. SSRN Electronic Journal, 2021, 162: 672-683.
|
15 |
YANG X L, DUAN Y K, FENG X N, et al. An experimental study on preventing thermal runaway propagation in lithium-ion battery module using aerogel and liquid cooling plate together[J]. Fire Technology, 2020, 56(6): 2579-2602.
|
16 |
WANG Y, WANG F F, ZHAO L Y, et al. Shape-stable and fire-resistant hybrid phase change materials with enhanced thermoconductivity for battery cooling[J]. Chemical Engineering Journal, 2022, 431: 133983.
|