1 |
陈海生, 李泓, 徐玉杰, 等. 2022年中国储能技术研究进展[J]. 储能科学与技术, 2023, 12(5): 1516-1552.
|
|
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2022[J]. Energy Storage Science and Technology, 2023, 12(5): 1516-1552.
|
2 |
YANG Z G, ZHANG J L, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613.
|
3 |
贾志军, 宋士强, 王保国. 液流电池储能技术研究现状与展望[J]. 储能科学与技术, 2012, 1(1): 50-57.
|
|
JIA Z J, SONG S Q, WANG B G. Acritical review on redox flow batteries for electrical energy storage applications[J]. Energy Storage Science and Technology, 2012, 1(1): 50-57.
|
4 |
谢聪鑫, 郑琼, 李先锋, 等. 液流电池技术的最新进展[J]. 储能科学与技术, 2017, 6(5): 1050-1057.
|
|
XIE C X, ZHENG Q, LI X F, et al. Current advances in the flow battery technology[J]. Energy Storage Science and Technology, 2017, 6(5): 1050-1057.
|
5 |
缪平, 姚祯, LEMMON John, 等. 电池储能技术研究进展及展望[J]. 储能科学与技术, 2020, 9(3): 670-678.
|
|
MIAO P, YAO Z, JOHN L, et al. Current situations and prospects of energy storage batteries[J]. Energy Storage Science and Technology, 2020, 9(3): 670-678.
|
6 |
YIN Y B, LI X F. The flow battery for stationary large-scale energy storage[J]. Engineering, 2023, 21: 42-44.
|
7 |
袁治章, 刘宗浩, 李先锋. 液流电池储能技术研究进展[J]. 储能科学与技术, 2022, 11(9): 2944-2958.
|
|
YUAN Z Z, LIU Z H, LI X F. Research progress of flow battery technologies[J]. Energy Storage Science and Technology, 2022, 11(9): 2944-2958.
|
8 |
TIAN Y D, CHEN S, HE Y L, et al. A highly reversible dendrite-free Zn anode via spontaneous galvanic replacement reaction for advanced zinc-iodine batteries[J]. Nano Research Energy, 2022, 1: e9120025.
|
9 |
孟琳. 锌溴液流电池储能技术研究和应用进展[J]. 储能科学与技术, 2013, 2(1): 35-41.
|
|
MENG L. Recent progress in zinc-bromine flow battery energy storage technologies[J]. Energy Storage Science and Technology, 2013, 2(1): 35-41.
|
10 |
LIN H, BAI L F, HAN X, et al. Pyrolytic carbon felt electrode Inhibits Formation of Zinc Dendrites in Zinc Bromine Flow Batteries[J]. International Journal of Electrochemical Science, 2018, 13(12): 12049-12061.
|
11 |
ZHENG X H, LIU Z C, SUN J F, et al. Constructing robust heterostructured interface for anode-free zinc batteries with ultrahigh capacities[J]. Nature Communications, 2023, 14: 76.
|
12 |
XU Z C, FAN Q, LI Y, et al. Review of zinc dendrite formation in zinc bromine redox flow battery[J]. Renewable and Sustainable Energy Reviews, 2020, 127: 109838.
|
13 |
WANG K L, XIAO Y, PEI P C, et al. A phase-field model of dendrite growth of electrodeposited zinc[J]. Journal of the Electrochemical Society, 2019, 166(10): D389-D394.
|
14 |
XIE C L, ZHANG Q, YANG Z F, et al. Intrinsically zincophobic protective layer for dendrite-free zinc metal anode[J]. Chinese Chemical Letters, 2022, 33(5): 2653-2657.
|
15 |
ULAGANATHAN M, JAIN A, ARAVINDAN V, et al. Bio-mass derived mesoporous carbon as superior electrode in all vanadium redox flow battery with multicouple reactions[J]. Journal of Power Sources, 2015, 274: 846-850.
|
16 |
JIANG H R, WU M C, REN Y X, et al. Towards a uniform distribution of zinc in the negative electrode for zinc bromine flow batteries[J]. Applied Energy, 2018, 213: 366-374.
|
17 |
HOYT N C, HAWTHORNE K L, SAVINELL R F, et al. Plating utilization of carbon felt in a hybrid flow battery[J]. Journal of the Electrochemical Society, 2015, 163(1): A5041-A5048.
|
18 |
LU W J, XU P C, SHAO S Y, et al. Multifunctional carbon felt electrode with N-rich defects enables a long-cycle zinc-bromine flow battery with ultrahigh power density[J]. Advanced Functional Materials, 2021, 31(30): doi: 10.1002/adfm.202102913.
|
19 |
LEE H, DELLATORE S M, MILLER W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849): 426-430.
|
20 |
YIN Y B, WANG S N, ZHANG Q, et al. Dendrite-free zinc deposition induced by tin-modified multifunctional 3D host for stable zinc-based flow battery[J]. Advanced Materials, 2020, 32(6): doi:10.1002/adma.201906803.
|
21 |
BAE S, LEE J, KIM D S. The effect of Cr3+-Functionalized additive in zinc-bromine flow battery[J]. Journal of Power Sources, 2019, 413: 167-173.
|
22 |
RAJARATHNAM G P, MONTOYA A, VASSALLO A M. The influence of a chloride-based supporting electrolyte on electrodeposited zinc in zinc/bromine flow batteries[J]. Electrochimica Acta, 2018, 292: 903-913.
|
23 |
XU Z C, WANG J, YAN S C, et al. Modeling of zinc bromine redox flow battery with application to channel design[J]. Journal of Power Sources, 2020, 450: 227436.
|
24 |
LU W J, LI T Y, YUAN C G, et al. Advanced porous composite membrane with ability to regulate zinc deposition enables dendrite-free and high-areal capacity zinc-based flow battery[J]. Energy Storage Materials, 2022, 47: 415-423.
|
25 |
HU J, YUE M, ZHANG H M, et al. A boron nitride nanosheets composite membrane for a long-life zinc-based flow battery[J]. Angewandte Chemie International Edition, 2020, 59(17): 6715-6719.
|
26 |
LI Q A, BAI A Y, ZHANG T Y, et al. Dopamine-derived nitrogen-doped carboxyl multiwalled carbon nanotube-modified graphite felt with improved electrochemical activity for vanadium redox flow batteries[J]. Royal Society Open Science, 2020, 7(7): 200402.
|
27 |
QU K G, ZHENG Y, DAI S, et al. Polydopamine-graphene oxide derived mesoporous carbon nanosheets for enhanced oxygen reduction[J]. Nanoscale, 2015, 7(29): 12598-12605.
|
28 |
WANG C H, LAI Q Z, FENG K, et al. From zeolite-type metal organic framework to porous nano-sheet carbon: High activity positive electrode material for bromine-based flow batteries[J]. Nano Energy, 2018, 44: 240-247.
|
29 |
WU M C, JIANG H R, ZHANG R H, et al. N-doped graphene nanoplatelets as a highly active catalyst for Br2/Br- redox reactions in zinc-bromine flow batteries[J]. Electrochimica Acta, 2019, 318: 69-75.
|
30 |
BINIAK S, SZYMAŃSKI G, SIEDLEWSKI J, et al. The characterization of activated carbons with oxygen and nitrogen surface groups[J]. Carbon, 1997, 35(12): 1799-1810.
|
31 |
RAJARATHNAM G P, EASTON M E, SCHNEIDER M, et al. The influence of ionic liquid additives on zinc half-cell electrochemical performance in zinc/bromine flow batteries[J]. RSC Advances, 2016, 6(33): 27788-27797.
|
32 |
WU T, HUANG K L, LIU S Q, et al. Hydrothermal ammoniated treatment of PAN-graphite felt for vanadium redox flow battery[J]. Journal of Solid State Electrochemistry, 2012, 16(2): 579-585.
|