储能科学与技术 ›› 2024, Vol. 13 ›› Issue (2): 370-380.doi: 10.19799/j.cnki.2095-4239.2023.0648

• 储能材料与器件 • 上一篇    下一篇

基于高面容量锌溴液流电池的电堆结构及负极材料设计与优化

孙晓云1(), 王德仁1(), 孟琳2, 任忠山2, 李森森2   

  1. 1.北京科技大学新材料技术研究院,北京 100083
    2.江苏恒安储能科技有限公司,江苏 南京 211153
  • 收稿日期:2023-09-19 修回日期:2023-10-11 出版日期:2024-02-28 发布日期:2024-03-01
  • 通讯作者: 王德仁 E-mail:xiaoyunsun1999@163.com;dr_wang@ustb.edu.cn
  • 作者简介:孙晓云(1999—),男,硕士研究生,从事高面容量锌溴液流电池研究,E-mail:xiaoyunsun1999@163.com

Design and optimization of cell structure and negative electrode materials for high areal capacity zinc-bromine flow batteries

Xiaoyun SUN1(), Deren WANG1(), Lin MENG2, Zhongshan REN2, Sensen LI2   

  1. 1.Institute for Advanced Materials and Technology, University of Science and Technology, Beijing 100083, China
    2.Jiangsu Heng'an Energy Storage Technology Co. Ltd. , Nanjing 211153, Jiangsu, China
  • Received:2023-09-19 Revised:2023-10-11 Online:2024-02-28 Published:2024-03-01
  • Contact: Deren WANG E-mail:xiaoyunsun1999@163.com;dr_wang@ustb.edu.cn

摘要:

双碳目标下,大规模长时储能对以新能源为主体的新型电力系统发展至关重要。锌溴液流电池兼具低成本和高能量密度优势,在能源存储领域有良好的发展前景。作为半沉积型电池,锌沉积面容量的大小对电池储能时长和经济性均有重要影响。本研究采用高导电性的双极板,并在负极表面构建缺陷工程,成功对锌溴液流电池电堆结构和负极电极进行优化,并实现了电池在高面容量条件下的出色性能。此外,通过SEM、XPS、Raman光谱、CV、EIS以及GCD测试等方法进行表征对比,选取了中度氧化的石墨毡为最佳电极材料。优化的电堆结构与中度氧化的石墨毡相结合,在电流密度为20 mA/cm2、面容量为120 mA·h/cm2的条件下,电池实现了94.26%的库仑效率和82.12%的能量效率。最后,本文揭示了这一优化策略的作用机制,优化的电堆结构可以改善电池内部电流分布,且在低面容量条件下效果显著。而随着面容量的提升,只有结合负极表面的亲锌缺陷工程方可实现平坦且致密的锌沉积,并避免锌枝晶形成。结合优化后的电堆结构与负极材料,最终实现电池在高面容量条件下实现优异性能。本研究为锌溴液流电池作为长时储能设备的未来应用提供了有力支持。

关键词: 锌溴液流电池, 高面容量, 均匀电流分布, 电堆结构, 缺陷工程

Abstract:

In the context of carbon neutrality goals, large-scale, long-duration energy storage is crucial for developing modern power systems primarily based on renewable energy. Zinc-bromine flow batteries, known for their low cost and high energy density, hold great promise in energy storage. As a semi-deposited battery, the size of zinc deposition areal capacity considerably impacts both the energy storage duration of the battery and its economic viability. Herein, highly conductive bipolar plates were employed, and defect engineering was implemented on the surface of the negative electrode of the zinc-bromine flow battery. This optimization successfully enhanced the cell structure of the battery and negative electrode, resulting in the outstanding battery performance under high areal capacity conditions. Furthermore, through characterization and comparison using methods such as scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and Galvanostatic charge-discharge testing, moderately oxidized graphite felt was identified as the optimal electrode material. When combined with the optimized cell structure, the moderately oxidized graphite felt achieved remarkable performance. At a current density of 20 mA/cm2 and an areal capacity of 120 mAh·cm-2, the battery demonstrated an impressive 94.26% Coulombic efficiency and 82.12% energy efficiency. Finally, this study elucidates the mechanism behind this optimization strategy. The optimized cell stack structure considerably improves the distribution of internal currents in the battery, especially under low areal capacity conditions. As the areal capacity increases, achieving flat and dense zinc deposition while preventing zinc dendrite formation necessitates the integration of zincophilic defect engineering on the negative electrode surface. By integrating the optimized cell stack structure with the negative electrode material, exceptional battery performance is realized under high areal capacity conditions. This study provides robust support for the future application of zinc-bromine flow batteries as long-duration energy storage devices.

Key words: zinc-bromine flow batteries, high areal capacity, homogenous current distribution, battery structure, defect engineering

中图分类号: